Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/1524
Title: Bifurcations and turing instabilities in reaction-diffusion systems with time-dependent diffusivities
Authors: Fernández de la Nuez, Isabel 
García Cortí, Juan Luis
Pacheco Castelao, José Miguel
Keywords: Teoria de la Bifurcación
Ecuaciones de reacción difusión
Issue Date: 2005
Journal: Revista de la Academia Canaria de Ciencias 
Abstract: A class of two-component, one-diemnsional, react-diffusion systems of the type usually found in Ecology are analysed in order to establish the qualitative behavior of solutions. It is shown that for diffusivities in the form D_j=d_j+b_j cos⁡(ωt+ ϕ) relationships can be derived from which amplitude destabilization can be assessed depending on the wavenumber k and the variable diffusion coefficients, specially the frequency ω. Therefore, time-dependent diffusivities can control the turing instability mechanism. The analysis is perfirmed using Floquet´s Theory. Numerical simulations for various kinetics are presented, and bifurcation diagrams in the plane (k, ω) are obtained
URI: http://hdl.handle.net/10553/1524
ISSN: 1130-4723
Source: Revista de la Academia Canaria de Ciencias. XVI (1-2). pp. 89-98
Appears in Collections:Artículos
Thumbnail
Adobe PDF (1,77 MB)
Show full item record

Page view(s)

34
checked on Mar 9, 2024

Download(s)

46
checked on Mar 9, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.