Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/151554
Título: Characterization and Modelling of Environmental Crime: A Case Study Applied to the Canary Islands (Spain)
Autores/as: Quesada Ruiz, Lorenzo C. 
Ferrer Valero, Nicolás 
García Romero, Leví Aday 
Clasificación UNESCO: 250507 Geografía física
Palabras clave: Environmental crime
Random forest
Predictive mapping
Human impacts
Oceanic islands
Fecha de publicación: 2025
Proyectos: IMPLACOST
Publicación seriada: ISPRS International Journal of Geo-Information 
Resumen: The escalating environmental crisis and the threat posed by environmental crime demand more effective prevention strategies. The predictive mapping of environmental crimes can address this challenge by improving monitoring and response. This study proposes an analysis and modelling of the occurrence of environmental crimes in the Canary Islands, a territory of exceptional ecological value and strong tourism and urban sprawl pressures. Four types of illegal activity were examined: buildings and constructions, mining and tilling, solid waste dumping, and liquid waste discharging. A predictive modelling framework based on Random Forest (RF) machine learning algorithms was applied to identify spatial patterns and environmental crime potential. A colour-based environmental crime potential map was generated for each island, showing the likelihood of 0, 1, 2, 3, or all 4 types of environmental crime. Findings reveal that 43.2% of the surface area of the islands could potentially be affected by at least one crime type. Potential occurrences are lower in protected natural areas, in islands with lower population densities and in inland areas compared to coastal regions. The methodology provides a foundation for future research which could assist policymakers and environmental protectors in combating and preventing environmental crimes more effectively and contribute to the preservation of their ecosystems
URI: https://accedacris.ulpgc.es/jspui/handle/10553/151554
ISSN: 2220-9964
DOI: 10.3390/ijgi14110410
Fuente: ISPRS International Journal of Geo-Information [EISSN 2220-9964], v.14 (11) (Octubre 2025)
Colección:Artículos
Adobe PDF (4,87 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.