Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/151554
Campo DC Valoridioma
dc.contributor.authorQuesada Ruiz, Lorenzo C.en_US
dc.contributor.authorFerrer Valero, Nicolásen_US
dc.contributor.authorGarcía Romero, Leví Adayen_US
dc.date.accessioned2025-11-11T10:34:25Z-
dc.date.available2025-11-11T10:34:25Z-
dc.date.issued2025en_US
dc.identifier.issn2220-9964en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/151554-
dc.description.abstractThe escalating environmental crisis and the threat posed by environmental crime demand more effective prevention strategies. The predictive mapping of environmental crimes can address this challenge by improving monitoring and response. This study proposes an analysis and modelling of the occurrence of environmental crimes in the Canary Islands, a territory of exceptional ecological value and strong tourism and urban sprawl pressures. Four types of illegal activity were examined: buildings and constructions, mining and tilling, solid waste dumping, and liquid waste discharging. A predictive modelling framework based on Random Forest (RF) machine learning algorithms was applied to identify spatial patterns and environmental crime potential. A colour-based environmental crime potential map was generated for each island, showing the likelihood of 0, 1, 2, 3, or all 4 types of environmental crime. Findings reveal that 43.2% of the surface area of the islands could potentially be affected by at least one crime type. Potential occurrences are lower in protected natural areas, in islands with lower population densities and in inland areas compared to coastal regions. The methodology provides a foundation for future research which could assist policymakers and environmental protectors in combating and preventing environmental crimes more effectively and contribute to the preservation of their ecosystemsen_US
dc.languagespaen_US
dc.relationIMPLACOSTen_US
dc.relation.ispartofISPRS International Journal of Geo-Informationen_US
dc.sourceISPRS International Journal of Geo-Information [EISSN 2220-9964], v.14 (11) (Octubre 2025)en_US
dc.subject250507 Geografía físicaen_US
dc.subject.otherEnvironmental crimeen_US
dc.subject.otherRandom foresten_US
dc.subject.otherPredictive mappingen_US
dc.subject.otherHuman impactsen_US
dc.subject.otherOceanic islandsen_US
dc.titleCharacterization and Modelling of Environmental Crime: A Case Study Applied to the Canary Islands (Spain)en_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/ijgi14110410en_US
dc.identifier.issue11-
dc.relation.volume14en_US
dc.investigacionArtes y Humanidadesen_US
dc.type2Artículoen_US
dc.description.numberofpages23en_US
dc.utils.revisionen_US
dc.date.coverdateOctubre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-HUMen_US
dc.description.sjr0,712
dc.description.jcr2,8
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,5
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptDepartamento de Geografía-
crisitem.author.deptGIR IOCAG: Geografía, Medio Ambiente y Tecnologías de la Información Geográfica-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptGIR IOCAG: Geografía, Medio Ambiente y Tecnologías de la Información Geográfica-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.orcidhttps://orcid.org/0000-0001-7886-5678-
crisitem.author.orcid0000-0002-3402-6183-
crisitem.author.orcid0000-0002-4985-9073-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameQuesada Ruiz, Lorenzo C.-
crisitem.author.fullNameFerrer Valero, Nicolás-
crisitem.author.fullNameGarcía Romero, Leví Aday-
Colección:Artículos
Adobe PDF (4,87 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.