Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/151480
Campo DC Valoridioma
dc.contributor.authorDjaffal, Souhailaen_US
dc.contributor.authorBenmabrouk, Yasminaen_US
dc.contributor.authorDjeddi, Chawkien_US
dc.contributor.authorDiaz, Moisesen_US
dc.date.accessioned2025-11-10T17:10:41Z-
dc.date.available2025-11-10T17:10:41Z-
dc.date.issued2025en_US
dc.identifier.isbn9783031908927en_US
dc.identifier.issn2367-3370en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/151480-
dc.description.abstractIn real-world datasets, class imbalance is common, where certain classes are underrepresented, leading to skewed distributions that negatively impact classifier performance, particularly for minority classes. This issue is prevalent in script identification tasks, where underrepresented scripts lead to biased models that struggle to predict minority classes accurately. To address this problem, we explored the effectiveness of various resampling techniques, grouped into under-sampling, over-sampling, and hybrid-sampling methods. Our study evaluates these techniques by testing multiple classifiers on a subset of the MDIW-13 dataset, focusing on handwritten page level script identification. The results demonstrate significant improvements in various performance metrics when applying resampling techniques, emphasizing the crucial role of hybrid sampling in mitigating class imbalance in script identification tasks.en_US
dc.languageengen_US
dc.relation.ispartofLecture Notes in Networks and Systemsen_US
dc.sourceLecture Notes in Networks and Systems [ISSN 2367-3370], v. 1393 LNNS, p. 455-470, (Enero 2026)en_US
dc.subject330405 Sistemas de reconocimiento de caracteresen_US
dc.subject.otherHandwritten page level script identificationen_US
dc.subject.otherHybrid-samplingen_US
dc.subject.otherMdiw-13 dataseten_US
dc.subject.otherOver-samplingen_US
dc.subject.otherUnder-samplingen_US
dc.titleAddressing class imbalance in handwritten script identification using sampling techniquesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference6th Mediterranean Conference on Pattern Recognition and Artificial Intelligence (MedPRAI 2024)en_US
dc.identifier.doi10.1007/978-3-031-90893-4_30en_US
dc.identifier.scopus105020573971-
dc.contributor.orcid0009-0001-6217-0916-
dc.contributor.orcid0000-0002-5511-7578-
dc.contributor.orcid0000-0002-8436-827X-
dc.contributor.orcid0000-0003-3878-3867-
dc.contributor.authorscopusid59148118200-
dc.contributor.authorscopusid57988310700-
dc.contributor.authorscopusid55078188200-
dc.contributor.authorscopusid60144087300-
dc.identifier.eissn2367-3389-
dc.description.lastpage470en_US
dc.description.firstpage455en_US
dc.relation.volume1393 LNNSen_US
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2026en_US
dc.identifier.conferenceidevents156066-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr0,171
dc.description.sjrqQ4
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.event.eventsstartdate18-10-2024-
crisitem.event.eventsenddate19-10-2024-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.