Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/151480
Título: Addressing class imbalance in handwritten script identification using sampling techniques
Autores/as: Djaffal, Souhaila
Benmabrouk, Yasmina
Djeddi, Chawki
Diaz, Moises 
Clasificación UNESCO: 330405 Sistemas de reconocimiento de caracteres
Palabras clave: Handwritten page level script identification
Hybrid-sampling
Mdiw-13 dataset
Over-sampling
Under-sampling
Fecha de publicación: 2025
Publicación seriada: Lecture Notes in Networks and Systems 
Conferencia: 6th Mediterranean Conference on Pattern Recognition and Artificial Intelligence (MedPRAI 2024) 
Resumen: In real-world datasets, class imbalance is common, where certain classes are underrepresented, leading to skewed distributions that negatively impact classifier performance, particularly for minority classes. This issue is prevalent in script identification tasks, where underrepresented scripts lead to biased models that struggle to predict minority classes accurately. To address this problem, we explored the effectiveness of various resampling techniques, grouped into under-sampling, over-sampling, and hybrid-sampling methods. Our study evaluates these techniques by testing multiple classifiers on a subset of the MDIW-13 dataset, focusing on handwritten page level script identification. The results demonstrate significant improvements in various performance metrics when applying resampling techniques, emphasizing the crucial role of hybrid sampling in mitigating class imbalance in script identification tasks.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/151480
ISBN: 9783031908927
ISSN: 2367-3370
DOI: 10.1007/978-3-031-90893-4_30
Fuente: Lecture Notes in Networks and Systems [ISSN 2367-3370], v. 1393 LNNS, p. 455-470, (Enero 2026)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.