Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/151470
Campo DC Valoridioma
dc.contributor.authorBlanco, Marcosen_US
dc.contributor.authorMazorra Aguiar, Luisen_US
dc.contributor.authorVillalba Cabrera, Isabelen_US
dc.contributor.authorNavarro, Gustavoen_US
dc.contributor.authorNájera, Jorgeen_US
dc.contributor.authorLafoz, Marcosen_US
dc.date.accessioned2025-11-10T15:04:37Z-
dc.date.available2025-11-10T15:04:37Z-
dc.date.issued2025en_US
dc.identifier.issn2076-3417en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/151470-
dc.description.abstractThis paper presents a power smoothing strategy for wave energy converters (WECs) by means of energy storage systems (ESS) with integrated forecasting filtering algorithms applied to their control. The oscillatory nature of wave energy leads to high variability in power output, posing significant challenges for grid integration. A case study in Tenerife, Spain, was modeled in MATLAB-Simulink (release r2020b) to evaluate the impact of prediction-enhanced smoothing filters on ESS sizing. Various forecasting algorithms were assessed, including Bayesian Neural Networks, ARMA models, and persistence models. The simulation results demonstrate that the use of forecasting algorithms substantially reduces energy storage requirements while maintaining grid stability. Specifically, the application of Bayesian Neural Networks reduced the required ESS energy by up to 36.52% compared to traditional filters. In a perfect prediction scenario, reductions of up to 53.91% were achieved. These results highlight the importance of combining appropriate filtering strategies with advanced forecasting techniques to improve the technical and economic viability of wave energy projects. The paper concludes with a parametric analysis of moving average filter windows and prediction horizons, identifying the optimal combinations for different sea conditions. In summary, this study provides practical information into reducing the storage capacity required for power smoothing in wave energy systems, thereby contributing to the mitigation of grid integration challenges that may arise with the large-scale deployment of marine renewable energyen_US
dc.languageengen_US
dc.relation.ispartofApplied Sciencesen_US
dc.sourceApplied Sciences [ISSN 2076-3417],v. 15 (20), (Octubre 2025)en_US
dc.subject3306 Ingeniería y tecnología eléctricasen_US
dc.subject.otherBayesian Neural Networksen_US
dc.subject.otherEnergy Storage Systemsen_US
dc.subject.otherForecasting Filteringen_US
dc.subject.otherGrid Integrationen_US
dc.subject.otherWave Energyen_US
dc.titlePower Smoothing in a Wave Energy Conversion Using Energy Storage Systems: Benefits of Forecasting-Enhanced Filtering for Reduction in Energy Storage Requirementsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/app152011106en_US
dc.identifier.scopus105020237382-
dc.contributor.orcid0000-0003-3641-1867-
dc.contributor.orcid0000-0002-9746-7461-
dc.contributor.orcid0000-0002-9225-4686-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-3396-0062-
dc.contributor.orcid0000-0002-8196-8958-
dc.contributor.authorscopusid7202954829-
dc.contributor.authorscopusid6506386746-
dc.contributor.authorscopusid57201433420-
dc.contributor.authorscopusid55332235500-
dc.contributor.authorscopusid57197827090-
dc.contributor.authorscopusid16068384900-
dc.identifier.eissn2076-3417-
dc.identifier.issue20-
dc.relation.volume15en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages35en_US
dc.utils.revisionen_US
dc.date.coverdateOctubre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,277
dc.description.sjrqQ3
dc.description.miaricds9,8
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.orcid0000-0002-9746-7461-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMazorra Aguiar, Luis-
crisitem.author.fullNameVillalba Cabrera, Isabel-
Colección:Artículos
Adobe PDF (15,78 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.