Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/151328
Campo DC Valoridioma
dc.contributor.authorMartinez, Eliseoen_US
dc.contributor.authorGómez Déniz, Emilioen_US
dc.contributor.authorGallardo, Diego I.en_US
dc.contributor.authorVenegas, Osvaldoen_US
dc.contributor.authorGomez, Hector W.en_US
dc.date.accessioned2025-11-07T09:00:07Z-
dc.date.available2025-11-07T09:00:07Z-
dc.date.issued2025en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/151328-
dc.description.abstractIn this article, we introduced an extension of the chi-square distribution by employing a slash-type methodology that enhanced the weight of the right tail, thereby producing a heavy-tailed distribution. We explored two different representations of the proposed distribution and examined several of its key properties, such as the mode, cumulative distribution function, reliability and hazard functions, moments, and the skewness and kurtosis coefficients. Additionally, we demonstrated that the classical chi-square distribution was a special case of our proposed model. Parameter estimation was carried out using both the method of moments and the maximum likelihood estimation, the latter via the expectation-maximization (EM) algorithm. A simulation study was conducted to evaluate the performance of parameter recovery. Finally, we applied the new distribution to a wind speed dataset, showing that it provided a good fit, particularly in the presence of extreme values.en_US
dc.languageengen_US
dc.relation.ispartofAims Mathematicsen_US
dc.sourceAims Mathematics,v. 10 (10), p. 23849-23868, (2025)en_US
dc.subject5302 Econometríaen_US
dc.subject.otherGumbel Distributionen_US
dc.subject.otherSlashen_US
dc.subject.otherExtensionen_US
dc.subject.otherChi-Square Distributionen_US
dc.subject.otherEm Algorithmen_US
dc.subject.otherHeavy-Tailed Distributionen_US
dc.subject.otherMaximum Likelihooden_US
dc.subject.otherSlash Distributionen_US
dc.titleThe heavy-tailed chi-square model: properties, estimation and application to wind speed dataen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3934/math.20251060en_US
dc.identifier.isi001599826100001-
dc.identifier.eissn2473-6988-
dc.description.lastpage23868en_US
dc.identifier.issue10-
dc.description.firstpage23849en_US
dc.relation.volume10en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages20en_US
dc.utils.revisionNoen_US
dc.contributor.wosstandardWOS:Martínez, E-
dc.contributor.wosstandardWOS:Gómez-Déniz, E-
dc.contributor.wosstandardWOS:Gallardo, DI-
dc.contributor.wosstandardWOS:Venegas, O-
dc.contributor.wosstandardWOS:Gómez, HW-
dc.date.coverdate2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,456
dc.description.jcr1,8
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.esciESCI
dc.description.miaricds8,2
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameGómez Déniz, Emilio-
Colección:Artículos
Adobe PDF (358,2 kB)
Vista resumida

Visitas

3
actualizado el 10-ene-2026

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.