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1. Introduction

The slash distribution is a heavy-tailed extension of the normal distribution, defined as the quotient
of two independent random variables: a standard normal variable and a Beta-distributed variable with
a single parameter. Formally, a random variable S follows a slash distribution if it can be expressed as:

S = X1/X2, (1.1)

where X1 ∼ N(0, 1), X2 ∼ Beta(α, 1), and X1 is independent of X2. Its representation can be seen
in Johnson et al. [1]. The principal feature of this distribution is its heavier tails and greater kurtosis
compared to the normal distribution, making it more robust for modeling data with outliers. Early
properties of this family were discussed by Rogers and Tukey [2] and Mosteller and Tukey [3].
Maximum likelihood (ML) estimators location and scale are discussed in Kafadar [4]. Wang and
Genton [5] offer a multivariate version and a skew multivariate version of the slash distribution. Gómez
et al. [6] and Gómez and Venegas [7] extend the slash distribution using the family of univariate
and multivariate elliptical distributions. Genc [8] introduces a symmetric generalization of the slash
distribution; Genc [9] extends the slash distribution with the beta-normal distribution, and Reyes and
Iriarte [10] introduce a new family slash-type distribution using the Birnbaum–Saunders distribution.
This methodology for increasing the weight of the tails has also been used in distributions with positive
support, for example: Gui [11] in the Lindley distribution, Olmos et al. [12] in the generalised half-
normal distribution, Iriarte et al. [13] in the Rayleigh distribution, and Castillo et al. [14] in the Fréchet
distribution, among others.

A distribution that is very necessary in the present paper is the gamma distribution; the probability
density function (pdf) of which is given by

g(t; a, b) =
ba

Γ(a)
ta−1e−bt, t > 0, (1.2)

where a, b > 0, Γ(·) is the gamma function, and the corresponding cumulative distribution function
(cdf) is denoted by:

G(z; a, b) =
∫ z

0
g(t; a, b)dt. (1.3)

We can also say that a chi-square (CHI) distribution (see Johnson et al. [1]) has its pdf given by:

fX(x;σ, α) =
x
α
2−1

(2σ)α/2Γ
(
α
2

) exp
(
−

x
2σ

)
, x > 0, (1.4)

where σ > 0 is the scale parameter and α > 0 are degrees of freedom. It is denoted by X ∼ CHI(σ, α).
Some properties of this pdf are:

a) The cdf corresponding to (1.4) is

FX(x;α) =
γ
(
α
2 ,

x
2σ

)
Γ
(
α
2

) , x > 0, (1.5)

where γ(·, ·) is the incomplete gamma function.
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b) For r = 1, 2, 3, . . . , the r-th moment of X is

E(Xr) =
(2σ)rΓ

(
α
2 + r

)
Γ
(
α
2

) . (1.6)

c) The moment generating function (MX(t)) is given by

MX(t) = E
(
exp(tX)

)
= (1 − 2σt)−α/2, 2σt < 1. (1.7)

d) The coefficients of skewness (
√
β1) and kurtosis (β2), respectively, are

√
β1 =

√
8
α
, β2 = 3 +

12
α
. (1.8)

We observe that when α = 1, the CHI distribution has its mode at zero and a kurtosis coefficient of 15.
However, we aim to develop a model with a more flexible mode, i.e., one that is not restricted to zero.
This flexibility is achieved when α > 1, though it comes at the cost of a decreasing kurtosis level.
Based on this, the main motivation of this work is to increase the kurtosis and, consequently, to obtain
a distribution with a heavier tail. From this perspective, the main object of this article is to introduce
an extension of the CHI distribution making use of the slash-type methodology, which we call slash
chi-square (SCHI). The SCHI distribution has a heavier right tail than the CHI distribution, allowing it
to be used to model datasets with outliers.

The article is organized as follows. In Section 2 we give two representations of the SCHI distribution
and some of its properties. In Section 3 we estimate the parameters of the SCHI distribution, estimating
the moments and the ML using the expectation-maximization (EM) algorithm. In Section 4 we show
an application to wind speed data, comparing it with two other distributions. Section 5 offers some
conclusions.

2. SCHI distribution

In this section we introduce a representation of the SCHI distribution, with its pdf, cdf, and
properties.

2.1. Stochastic representation

We can represent the SCHI distribution as:

Z =
X
Y
, (2.1)

where X ∼ CHI(σ, α), Y ∼ Beta(q, 1), and σ, α, q > 0. We denote it by Z ∼ S CHI(σ, α, q).

2.2. Density function

The following proposition shows the pdf of the SCHI distribution, generated using the
representation given in (2.1).
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Proposition 2.1. Let Z ∼ S CHI(σ, α, q). Then, the pdf of Z is given by

fZ(z;σ, α, q) =
q(2σ)q

Γ
(
α
2

) z−(1+q)Γ

(
α

2
+ q

)
G

( z
2σ

,
α

2
+ q, 1

)
, z > 0, (2.2)

where σ > 0 is the scale parameter and α > 0 are degrees of freedom, q > 0 is a kurtosis parameter,
and G is the cdf of the gamma distribution.

Proof. Using the representation given in (2.1) and the Jacobian method, we have:

Z = X
Y

V = Y

}
⇒

X = ZV
Y = V

}
⇒ J =

∣∣∣∣∣∣ ∂X
∂Z

∂X
∂V

∂Y
∂Z

∂Y
∂V

∣∣∣∣∣∣ =
∣∣∣∣∣∣ v z

0 1

∣∣∣∣∣∣ = v,

fZ,V(z, v) = |J| fX,Y(zv, v),
fZ,V(z, v) = v fX(zv) fY(v) , z > 0 , 0 < v < 1,

fZ,V(z, v) =
q

(2σ)
α
2Γ

(
α
2

)z
α
2−1v

α
2+q−1 exp

(
−

zv
2σ

)
, z > 0 , 0 < v < 1,

then marginalizing with respect to variable v,

fZ(z;σ, α, q) = q

(2σ)
α
2 Γ( α2 )

z
α
2−1

∫ 1

0
v
α
2+q−1 exp

(
− zv

2σ

)
dv.

Making the following change to variable u = zv
2σ and using (1.3), the distribution associated with Z is

obtained. □

Figure 1 shows the shape of the SCHI distribution for some parameter values. We can observe that
as the parameter q decreases, the right tail of the SCHI becomes heavier.
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Figure 1. Densities SCHI(1,3,1) (black), SCHI(1,3,5) (red), and SCHI(1,3,10) (blue).
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We perform a brief comparison illustrating that the tails of the SCHI distribution are heavier as the
parameter q decreases. Table 1 shows P(Z > z) for different values of z in the SCHI distribution. We
also include the CHI distribution, enabling us to observe that as parameter q increases, the right tail of
the SCHI distribution becomes closer to the right tail of the CHI distribution.

Table 1. Tails comparison.

Distribution P(Z > 8) P(Z > 10) P(Z > 12)
SCHI(1,3,1) 0.362 0.296 0.249
SCHI(1,3,5) 0.096 0.050 0.027

SCHI(1,3,10) 0.067 0.031 0.014
CHI(1,3) 0.046 0.019 0.007

Proposition 2.2. Let Z ∼ S CHI(σ, α, q). Then, we obtain that:

lim
z→0+

fZ(z;σ, α, q) =



∞ if 0 < α < 2,

q
2σ(q+1) if α = 2,

0 if α > 2.

Proof. Calculating the limit as z → 0+ and applying L’Hopital’s rule to the pdf given in (2.2), three
results are obtained for each of the three cases of parameter α. □

Proposition 2.3. Let Z ∼ S CHI(σ, α, q). Then, the mode of Z is given as the solution of

zg
( z
2σ

,
α

2
+ q, 1

)
= 2σ(1 + q)G

( z
2σ

,
α

2
+ q, 1

)
,

where g and G are given in (1.2) and (1.3), respectively.

Proof. Straightforward, studying the first derivative of (2.2) with respect to z. □

2.3. Properties

The following proposition shows the closed form of the cdf; it depends on G, which is the cdf of
the gamma distribution given in (1.3).

Proposition 2.4. Let Z ∼ S CHI(σ, α, q). Then, the cdf of Z is given by

FZ(z;σ, α, q) = G
( z
2σ

;
α

2
, 1

)
−

(
2σ
z

)q Γ
(
α
2 + q

)
Γ
(
α
2

) G
( z
2σ

;
α

2
+ q, 1

)
, (2.3)

where σ, α, q, z > 0, and G is given in (1.3).

Proof. Using the definition of cdf and integration by parts, the result is obtained. □
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2.3.1. Reliability analysis

The reliability function r(t) = 1 − F(t) and the hazards function h(t) = f (t)
r(t) of the SCHI distribution

are given in the following corollary.

Corollary 2.1. Let T ∼ S CHI(σ, α, q). Then, the r(t) and h(t) of T are given by

(1) r(t) = 1 −G
(

t
2σ ; α2 , 1

)
−

(
2σ
t

)q Γ
(
α
2 + q

)
Γ
(
α
2

) G
( t
2σ

;
α

2
+ q, 1

)
,

(2) h(t) =
q(2σ)qt−1Γ

(
α
2 + q

)
G

(
t

2σ ,
α
2 + q, 1

)
tqΓ

(
α
2

)
− tqΓ

(
α
2

)
G

(
t

2σ ; α2 , 1
)
− (2σ)q Γ

(
α
2 + q

)
G

(
t

2σ ; α2 + q, 1
) ,

where σ, α, q, t > 0.

2.3.2. Heavy right tail of the SCHI distribution

A probability distribution with cdf F(t) on the real numbers is said to have a heavy right tail (see
Rolski et al. [15]) if

lim sup
t→∞

(
−

log r(t)
t

)
= 0.

The following result shows that the SCHI distribution has a heavy right tail.

Proposition 2.5. The cdf of the random variable T ∼ S CHI(σ, α, q) is a heavy-tailed distribution.

Proof. Applying L’Hôpital’s rule twice yields

lim sup
t→∞

(
−

log r(t)
t

)
= lim sup

t→∞

 g
(

t
2σ ; σ2 + q, 1

)
2σG

(
t

2σ ; σ2 + q, 1
) − 1 + q

t

 .
Calculating the righthand limit yields the result. □

Some recent studies on heavy-tailed distributions include those by Teamah et al. [16] and Afify
et al. [17], among others.

Figure 2 shows the shape of the hazards function for different parameter values; we observe that its
behavior is not monotonous.
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Figure 2. Hazard function for SCHI(1,3,1) (black), SCHI(1,3,5) (red), and SCHI(1,3,10)
(blue).

The following Proposition shows that the SCHI distribution can also be represented as a scale
mixture between the CHI and Beta distributions.

Proposition 2.6. If Z|X = x ∼ CHI(σx−1, α) and X ∼ Beta(q, 1), then Z ∼ S CHI(σ, α, q).

Proof. The marginal pdf of Z is given by

fZ(z;σ, α, q) =
∫ 1

0
fZ|X(z) fX(x) dx =

qz
α
2−1

(2σ)
α
2Γ

(
α
2

) ∫ 1

0
x
α
2+q−1 exp

(
−

zx
2σ

)
dx.

Making the following change to variable u = zx
2σ and using (1.3), the result is obtained. □

The following result shows that when parameter q tends to infinity in the SCHI distribution, the
CHI distribution is obtained.

Proposition 2.7. Let Z ∼ S CHI(σ, α, q). If q → ∞, then Z converges in law to a random variable
X ∼ CHI(σ, α).

Proof. Using the representation Z = X
Y , we analyze the convergence of this quotient, where X ∼

CHI(σ, α) and Y ∼ Beta(q, 1). In the Beta(q, 1) distribution, we have that Var[Y] = q
(q+2)(q+1)2 . Then,

applying Chebychev’s inequality for Y , we have ∀ϵ > 0

P [|Y − E[Y]| > ϵ] ≤
Var(Y)
ϵ2 =

q
(q + 2)(q + 1)2ϵ2 . (2.4)

If q → ∞, then the righthand side of (2.4) tends to zero, i.e., Y − E[Y] converges in probability to 0.
Also, E[Y] = q

1+q −→ 1, q→ ∞, then we have:

Y
P
−→ 1, q→ ∞.
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Since Z ∼ S CHI(σ, α, q), applying Slutsky’s lemma to Z = X
Y , we have:

Z
L
−→ X ∼ CHI(σ, α), q→ ∞,

i.e., for increasing values of q, Z converges in law to a CHI(σ, α) distribution. □

2.4. Moments

In this subsection, the moments of the SCHI distribution and its asymmetry and kurtosis coefficients
are given.

Proposition 2.8. Let Z ∼ S CHI(σ, α, q) with σ, α, q > 0. For r > 0, E[Zr] exists if and only if, q > r,
and in this case,

µr = E[Zr] =
q(2σ)r Γ

(
α
2 + r

)
(q − r)Γ

(
α
2

) . (2.5)

Proof. Using the representation given in Proposition 2.6, we have:

µr = E[Zr] = E [E (Zr|X)] = E


(
2(σX−1)

)r
Γ
(
α
2 + r

)
Γ
(
α
2

) 
=

(2σ)rΓ
(
α
2 + r

)
Γ
(
α
2

) E
[
X−r] = (2σ)rΓ

(
α
2 + r

)
Γ
(
α
2

) ∫ 1

0
qxq−r−1dx.

Solving the integral gives the result. □

From Proposition 2.8, the explicit expression of the noncentral moments, µr = E[Zr], for r =
1, 2, 3, 4 and the variance of Z ∼ S CHI(σ, α, q), Var(Z), follow.

Corollary 2.2. Let Z ∼ S CHI(σ, α, q) with σ, α, q > 0.

µ1 = σακ1, q > 1, µ2 = σ
2α(α + 2)κ2, q > 2,

µ3 = σ
3α(α + 2)(α + 4)κ3, q > 3, µ4 = σ

4α(α + 2)(α + 4)(α + 6)κ4, q > 4,

Var(Z) = σ2α
[
(α + 2)κ2 − ακ

2
1

]
, q > 2,

where κi =
q

q−i , q > i.

Remark 1. We observe that as q → ∞, Var(Z) → 2σ2α, which is the variance of the CHI(σ, α)
distribution. Furthermore, as q→ ∞, κi → 1 ∀i.

Table 2 shows the expected values and the mode for some parameter values.
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Table 2. Expected values and mode.

σ α q Expected Mode
1 3 2 6 1.3231

3 9/2 1.2450
4 4 1.1972
5 15/4 1.1649

2 3 2 12 2.6462
3 9 2.4901
4 8 2.3945
5 15/2 2.3299

3 4 2 24 7.8859
3 18 7.4439
4 16 7.1683
5 15 6.9804

10 3 2 60 13.2310
3 45 12.4507
4 40 11.9726
5 75/2 11.6496

The next corollary gives us the asymmetry coefficient,
√
β1, of a S CHI(σ, α, q) distribution.

Corollary 2.3. Let Z ∼ S CHI(σ, α, q) with q > 3. Then, the asymmetry coefficient of Z is

√
β1 =

(α + 2)(α + 4)κ3 − 3α(α + 2)κ1κ2 + 2α2κ3
1

√
α
[
(α + 2)κ2 − ακ

2
1

]3/2 .

Proof. Recall that

√
β1 =

E[(Z − E(Z))3]
(Var(Z))3/2 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ
2
1)3/2

,

where µ1, µ2 and µ3 were given in Corollary 2.2. □

Next Corollary gives us the kurtosis coefficient, β2, of a S CHI(σ, α, q) distribution.

Corollary 2.4. Let Z ∼ S CHI(σ, α, q) with q > 4. Then the kurtosis coefficient of Z is

β2 =
(α + 2)(α + 4)(α + 6)κ4 − 4α(α + 2)(α + 4)κ1κ3 + 6α2(α + 2)κ2

1κ2 − 3α3κ4
1

α
[
(α + 2)κ2 − ακ

2
1

]2 .

Proof. Recall that

β2 =
E[(Z − E(Z))4]

(Var(Z))2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ
2
1)2

,

where µ1, µ2, µ3, and µ4 were given in Corollary 2.2. □
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Remark 2. It can be verified that as q → ∞, the asymmetry and kurtosis coefficients converge to√
8
α

and 12
α
+ 3, respectively, which coincide with the corresponding coefficients for the CHI(σ, α)

distribution.

Table 3 shows that the values of the asymmetry and kurtosis coefficients depend on parameters
α and q, and that as q diminishes, these two coefficients increase. At the same time, as q
increases, the coefficients of asymmetry and kurtosis become those of the CHI(σ, α) distribution (see
Proposition 2.7).

Table 3. Asymmetry and kurtosis values for the SCHI distribution for various shape
parameters.

α q
√
β1 β2

1 5 3.555 31.909
3 2.397 19.256
1 6 3.224 21.750
3 2.047 11.611
1 7 3.079 18.766
3 1.893 9.480
1 10 2.926 16.273
3 1.732 7.791
1 100 2.829 15.008
3 1.634 7.004
1 ∞ 2.828 15
3 1.633 7

3. Inference

In this section, we show the moments estimators and ML estimators using the EM algorithm and a
simulation study by which to observe the behavior of the ML estimators.

3.1. Moments estimators

Let Z1, ...,Zn be a random sample with n terms distributed by Z ∼ S CHI(σ, α, q) and Zr = 1
n

∑n
i=1 Zr

i
for the sample moments. Then, the moment estimators (σ̂M, α̂M, q̂M) of (σ, α, q) for q > 3 are obtained
by solving the following system of nonlinear equations.

Z(q − 1) = σαq,

Z2(q − 2) = σ2α(α + 2)q,
Z3(q − 3) = σ3α(α + 2)(α + 4)q.

The solutions to these equations can be obtained using the nleqslv function in the R software version
4.0.5, [18].
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3.2. ML Estimators

Let Z1, ...,Zn be a random sample with n terms distributed Z ∼ S CHI(σ, α, q), then the log-
likelihood function for θ = (σ, α, q) can be expressed as:

ℓ(θ) = c(θ) − (1 + q)
n∑

i=1

log(zi) +
n∑

i=1

log
(
G

( zi

2σ
,
α

2
+ q, 1

))
, (3.1)

where c(θ) = n log(q)+nq log(2σ)−n log
(
Γ
(
α
2

))
+n log

(
Γ
(
α
2 + q

))
. When the log-likelihood function

given in (3.1) is partially derived for σ, α, and q, bringing it to equal zero, three equations are obtained
that are not easily resolved. One option for obtaining the ML estimators is to maximize equation (3.1)
using the optim function of the R software version 4.0.5, [18]. However, to obtain a more robust
estimation procedure, in the next subsection we will explore the use of the EM algorithm for this
particular problem.

3.3. EM algorithm

The EM algorithm (see Dempster et al. [19]) is a widely-used tool for calculating ML estimators
in scenarios with unobserved or latent data. Based on the stochastic representation in (2.1), we obtain
that the complete log-likelihood function for θ is given by

ℓc(θ) = n
[
log(q) −

α

2
log(2σ) − log Γ

(
α

2

)]
+

(
α

2
− 1

) n∑
i=1

log zi

+

(
α

2
+ q − 1

) n∑
i=1

log vi −
1

2σ

n∑
i=1

zivi.

Defining v̂i = E(Vi | Zi = zi) and ̂log vi = E(log Vi | Zi = zi), we obtain that

Q(θ | θ̂) = n
[
log(q) −

α

2
log(2σ) − log Γ

(
α

2

)]
+

(
α

2
− 1

) n∑
i=1

log zi

+

(
α

2
+ q − 1

) n∑
i=1

̂log vi −
1

2σ

n∑
i=1

zîvi.

On the other hand, note that the kernel of the distribution of Vi | Zi = zi is given by

f (vi | Zi = zi) ∝ v
α
2+q−1
i exp

(
−

zivi

2σ

)
, 0 < vi < 1,

i.e., Vi | Zi = zi ∼ TG(0,1)(α/2 + q, zi/(2σ)). Therefore, it is immediate that

E(Vi | Zi = zi) =
σ(α + 2q)G

(
zi

2σ ,
α
2 + q + 1, 1

)
ziG

(
zi

2σ ,
α
2 + q, 1

) , and (3.2)

E(log Vi | Zi = zi) =

(
zi

2σ

) α
2+q

Γ
(
α
2 + q

)
G

(
zi

2σ ,
α
2 + q, 1

) ∫ 1

0
log(x)x

α
2+q−1 exp

{
−

zix
2σ

}
dx. (3.3)

Details for these results are presented in the Appendix. We also argue the convergence of E(log Vi |

Zi = zi). Therefore, the EM algorithm is summarized as follows.
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• E-step: given α̂(k−1), q̂(k−1), and σ̂(k−1), the values for the parameters in the (k − 1)-th step, update
v̂i and ̂log vi, for i = 1, . . . , n, using Eqs (3.2) and (3.3), respectively.
• M1-step: update α̂(k), the value of α as the solution for the nonlinear equation

ψ
(
α

2

)
=

n∑
i=1

log zi +

n∑
i=1

̂log vi − n log(2σ̂(k−1)), (3.4)

where ψ(·) denotes the digamma function. Note that ψ(u) is an increasing function in u such that
limu→0 ψ(u) = −∞ and limu→+∞ ψ(u) = +∞. Therefore, Eq (3.4) has a unique solution.
• M2-step: update the value for q as follows

q̂(k) = −

1
n

n∑
i=1

̂log vi

−1

.

• M3-step: update the value for σ as follows

σ̂(k) =
1

nα̂(k)

n∑
i=1

zîvi.

3.4. Simulation study

In this section, we present a simulation study in order to assess the performance of the ML
estimators for the SCHI distribution. For this, we consider two values for σ: 1 and 5; two values
for α: 2 and 10; three values for q: 1, 2, and 3 and; three values for the sample size: 100, 200, and 500.
For each combination of σ, α, q, and n, we draw 5,000 samples of the corresponding SCHI model and
compute the ML estimators based on the EM algorithm and their standard errors. Then, we compute
the estimated bias (bias), mean of the estimated standard error (SE), root of the estimated mean squared
error (RMSE), and the 95% coverage probability (CP). Table 4 summarizes these results. In general
terms, note that the bias and the RMSE terms are reduced when the sample size is increased. On the
other hand, the SE and RMSE terms are closer when the sample size is increased, suggesting that the
variance of the ML estimators is well estimated even in finite samples. Finally, the CP terms are closer
to the nominal value, suggesting that the normal distribution is reasonable as an approximation for the
distribution of the ML estimators, again, even in finite samples.
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Table 4. Estimated bias, SE, and RMSE for ML estimators in finite samples for the SCHI
model.

n = 100 n = 200 n = 500
σ α q estimator bias SE RMSE CP bias SE RMSE CP bias SE RMSE CP
1 2.00 1 σ̂ 0.075 0.404 0.463 0.919 0.027 0.266 0.278 0.934 0.009 0.164 0.166 0.939

α̂ 0.098 0.390 0.445 0.952 0.046 0.261 0.270 0.955 0.018 0.161 0.165 0.953
q̂ 0.086 0.282 0.391 0.957 0.031 0.151 0.165 0.951 0.011 0.091 0.094 0.954

2 σ̂ 0.031 0.378 0.343 0.929 0.036 0.252 0.255 0.943 0.016 0.149 0.153 0.953
α̂ 0.087 0.340 0.372 0.961 0.035 0.228 0.241 0.946 0.013 0.140 0.141 0.955
q̂ 0.400 1.892 1.343 0.936 0.271 0.869 0.911 0.945 0.096 0.359 0.439 0.956

3 σ̂ -0.049 0.366 0.280 0.918 -0.001 0.259 0.213 0.944 0.014 0.156 0.151 0.956
α̂ 0.119 0.337 0.355 0.972 0.044 0.221 0.220 0.965 0.014 0.135 0.135 0.953
q̂ 0.282 3.748 1.680 0.891 0.413 2.504 1.532 0.923 0.315 1.190 1.122 0.944

10 1 σ̂ 0.014 0.415 0.444 0.892 0.004 0.288 0.293 0.927 0.001 0.181 0.184 0.939
α̂ 1.951 4.325 12.469 0.948 0.737 2.516 2.923 0.951 0.265 1.470 1.558 0.953
q̂ 0.027 0.149 0.162 0.952 0.016 0.102 0.107 0.953 0.004 0.063 0.064 0.950

2 σ̂ 0.025 0.337 0.355 0.928 0.017 0.232 0.240 0.940 0.004 0.144 0.143 0.945
α̂ 0.848 2.882 3.415 0.948 0.336 1.850 1.973 0.950 0.145 1.127 1.143 0.956
q̂ 0.154 0.511 0.615 0.953 0.064 0.299 0.330 0.959 0.023 0.178 0.183 0.955

3 σ̂ 0.015 0.312 0.305 0.930 0.016 0.214 0.222 0.943 0.007 0.132 0.136 0.941
α̂ 0.702 2.530 2.873 0.961 0.278 1.647 1.764 0.947 0.104 1.002 1.029 0.948
q̂ 0.363 1.337 1.242 0.945 0.207 0.734 0.847 0.950 0.078 0.379 0.423 0.959

5 2.00 1 σ̂ 0.287 1.981 2.187 0.915 0.141 1.330 1.398 0.933 0.049 0.823 0.830 0.950
α̂ 0.103 0.392 0.459 0.953 0.044 0.261 0.273 0.946 0.018 0.161 0.163 0.951
q̂ 0.075 0.267 0.357 0.952 0.033 0.152 0.167 0.955 0.011 0.091 0.092 0.955

2 σ̂ 0.205 1.921 1.720 0.933 0.162 1.256 1.271 0.942 0.094 0.747 0.786 0.947
α̂ 0.074 0.337 0.348 0.963 0.034 0.227 0.236 0.951 0.010 0.140 0.143 0.948
q̂ 0.450 2.054 1.419 0.942 0.265 0.899 0.943 0.944 0.094 0.349 0.398 0.953

3 σ̂ -0.255 1.817 1.368 0.912 -0.013 1.294 1.076 0.944 0.080 0.786 0.753 0.956
α̂ 0.119 0.336 0.352 0.971 0.045 0.221 0.221 0.965 0.014 0.135 0.136 0.950
q̂ 0.295 3.731 1.671 0.900 0.404 2.488 1.530 0.922 0.327 1.207 1.143 0.942

10 1 σ̂ 0.134 2.101 2.301 0.895 0.017 1.440 1.518 0.915 0.009 0.903 0.918 0.936
α̂ 1.716 4.253 5.986 0.942 0.786 2.543 2.983 0.950 0.263 1.466 1.544 0.953
q̂ 0.030 0.150 0.161 0.958 0.012 0.102 0.104 0.952 0.005 0.063 0.064 0.947

2 σ̂ 0.131 1.680 1.800 0.920 0.057 1.150 1.185 0.932 0.028 0.720 0.740 0.940
α̂ 0.875 2.890 3.475 0.945 0.400 1.867 2.054 0.952 0.132 1.126 1.160 0.943
q̂ 0.151 0.512 0.632 0.953 0.064 0.298 0.332 0.952 0.021 0.177 0.185 0.947

3 σ̂ 0.033 1.556 1.489 0.927 0.075 1.071 1.109 0.940 0.043 0.659 0.665 0.948
α̂ 0.733 2.532 2.768 0.967 0.303 1.651 1.781 0.946 0.088 0.999 1.024 0.947
q̂ 0.342 1.340 1.240 0.946 0.215 0.734 0.840 0.952 0.075 0.375 0.393 0.964

4. Application

We apply the distribution to analyze 246 observations of monthly maximum wind speed (mph) in
West Palm Beach, Florida (USA) for the months January 1984 to December 2005. The data is:

33,40,46,41,31,37,41,56,45,31,40,35,33,43,36,36,48,45,51,44,38,36,40,32,51,37,43,
33,35,44,41,41,33,45,38,43,62,45,51,39,35,58,48,35,43,49,43,39,39,40,39,45,48,43,
45,36,40,36,47,35,40,39,44,37,36,38,37,41,38,36,36,48,37,40,38,37,37,38,49,66,39,
45,37,35,39,52,66,51,39,64,59,36,36,36,41,41,39,45,40,37,33,66,38,59,38,41,45,35,
43,39,74,63,37,45,52,43,44,52,36,43,46,40,43,29,39,53,32,41,52,31,46,48,49,41,32,
37,29,43,40,47,45,38,28,30,40,36,37,38,37,33,30,34,38,45,40,31,39,31,31,38,32,34,
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45,39,31,29,39,36,34,55,38,37,36,34,44,32,54,30,39,30,41,33,36,39,33,33,30,40,44,
61,34,26,38,26,34,36,28,36,43,35,43,37,40,35,36,28,41,30,31,48,43,43,49,36,38,30,
33,35,36,45,29,43,33,39,38,29,38,41,31,35,40,33,51,33,40,45,32,29,35,37,35,30,32,

39,32,39,38,39,83,30,33,39,33,36,39,44,31,43,44,43,41,101,37,33.

Figure 3 shows a scatterplot and a boxplot of the data. It may be noted that the majority of the
observations are of a wind speed of around 40 mph, but there is one outlier (100 mph). Table 5 shows
descriptive statistics for the wind speed data where b1 and b2 are sample asymmetry and kurtosis
coefficients, respectively, with values of 2.344 and 13.030. In general, these values are higher than
those of the CHI distribution, suggesting the need to use a distribution with a heavier right tail, as the
kurtosis coefficient of the sample is very high, indicating the presence of outliers.
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Figure 3. Plots of the scatterplot and boxplot of the maximum wind speed(mph).

Table 5. Summary statistics for the wind speed data.

n z s2 b1 b2

264 40.114 80.390 2.344 13.030

One of the distributions used to model wind speed data is the Gumbel (G) distribution (see
Gumbel [20]). As this data presents a high sample kurtosis, Gómez et al. [21] extends this G
distribution using the slash methodology, obtaining the slash-Gumbel (SG) distribution. We say that
Z ∼ S G(µ, σ, q), if the pdf of Z is given by

fZ(z; µ, σ, q) =



qσq

(z − µ)q+1 κ(q; m(z, µ, σ), 1) if z > µ

q
eσ(q + 1)

if z = µ

−qσq

(z − µ)q+1 κ(q; 1,m(z, µ, σ)) if z < µ

(4.1)
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where µ ∈ R, σ > 0, q > 0, z ∈ R, κ( j; a, b) = (−1) j
∫ b

a

(
log(v)

) j exp(−v)dv, m(z, µ, σ) = exp
{
−

(
z−µ
σ

)}
,

j = 1, 2, 3, ..., and 0 ≤ a < b ≤ ∞.

In Nadarajah’s [22] work, an extension of the G distribution was introduced, known as the
Exponentiated Gumbel (EG) distribution. The pdf of the EG distribution is given by:

fX(x; µ, σ, α) =
α

σ
exp

{
−

x − µ
σ
− exp

(
−

x − µ
σ

)} [
1 − exp

{
− exp

(
−

x − µ
σ

)}]α−1
,

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, and α > 0 is a shape parameter.
We denote this as X ∼ EG(µ, σ, α).

Note that when α = 1, the standard G distribution is recovered as a particular case. In this
work, we also consider the EG distribution for data fitting purposes. Using results from Section 3.1,
moment estimators were computed, leading to the following values: σ̂M = 0.278, α̂M = 122.335, and
q̂M = 6.588, which were used as initial estimates for the ML approach.

For this data we first obtained ML estimates for the parameters of the SCHI distribution SCHI, and
then compared them with other models such as the CHI, SG, and EG using the Akaike information
criterion (AIC) (see Akaike [23]) and the Bayesian information criterion (BIC) (see Schwarz [24]), as
shown in Table 6.

Table 6. ML estimates for the wind speed data with corresponding standard errors (in
parentheses), AIC, and BIC values.

Estimates CHI (SE) SG (SE) EG(SE) SCHI (SE)
µ̂ − 36.346 (0.389) 34.692 (1.078) −

σ̂ 0.819 (0.072) 4.577 (0.492) 4.889 (0.724) 0.246 (0.031)
α̂ 49.000 (4.236) − 0.694 (0.160) 138.378 (16.118)
q̂ − 4.122 (1.380) − 6.667 (0.698)

AIC 1850.221 1800.067 1801.324 1794.629
BIC 1857.373 1810.795 1812.052 1805.356

Figure 4 displays the quantile-quantile (QQ) plot for the best model. From them, we calculated the
quantile residuals (QRs), which, if the model is appropriate for the data, should behave like a sample
from the standard normal distribution (see Dunn and Smyth [25]). This can be validated by using
traditional tests for normality, such as the Anderson-Darling (AD), Cramer-von Mises (CVM), and
Shapiro-Wilks (SW) tests. The p-values for the normality tests (AD, CVM, and WS) of the QRs for
the best model are shown below the QQ-plot in Figure 4. The QRs for the SCHI model seem to behave
like normal standard deviations. This supports the claim made earlier that the SCHI model provides
the best fit to the data.

AIMS Mathematics Volume 10, Issue 10, 23849–23868.



23864

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

SCHI

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s
AD: 0.695(0.069)
CVM: 0.124(0.052)
SW:0.993(0.300)

Figure 4. QQ-plot for QRs in the wind speed data for the SCHI model. The statistics AD,
CVM, and SW (with the corresponding p-values in parentheses) are presented.

5. Conclusions

In this work we present the SCHI distribution, which is an extension of the CHI distribution in
which we use the slash methodology to increase the weight of the right tail; it can thus be used for
modeling positive datasets with positive asymmetry and high kurtosis. We report some properties of
the SCHI distribution, and its parameters are estimated by the moments method and the ML using the
EM algorithm. Below we highlight some of the most important characteristics of the SCHI distribution:

• The SCHI distribution has two stochastic representations, given in Eq (2.1) and Proposition 2.6.
The mixed scale representation was important for implementing the EM algorithm.
• We obtained the expressions of the pdf, cdf, and hazard function in their closed form, and

represented by the cdf of the gamma distribution.
• The asymmetry and kurtosis coefficients show that the SCHI distribution is more flexible than

the CHI distribution. In Table 2, the right tail of the SCHI distribution becomes heavier as the
parameter q diminishes.
• Using the EM algorithm, we obtained the ML estimators ML for the parameters of the SCHI

distribution. A simulation study shows that as the sample size increases, the ML estimators
remain consistent and stable.
• When applied to a set of wind speed data, the SCHI distribution is observed to provide a better fit

than the CHI, SG and EG distributions. This is evidenced by lower AIC and BIC values, as well
as higher p-values in the AD, CVM, and SW tests.
• Future directions for this model are related to reparametrize the model in terms of the mean,

explore its use in survival analysis, and propose a methodology to bias reduction in the estimators,
to name a few.
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Déniz was not involved in the editorial review and the decision to publish this article.

The authors declare no conflicts of interest.

References

1. N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, 2 Eds., New York:
Wiley, 1994.

2. W. H. Rogers, J. W. Tukey, Understanding some long-tailed symmetrical distributions, Stat. Neerl.,
26 (1972), 211–226. https://doi.org/10.1111/j.1467-9574.1972.tb00191.x

3. F. Mosteller, J. W. Tukey, Data analysis and regression, Pearson, 1977.

4. K. Kafadar, A biweight approach to the one-sample problem, J. Am. Stat. Assoc., 77 (1982), 416–
424. https://doi.org/10.2307/2287262

5. J. Wang, M. G. Genton, The multivariate skew-slash distribution, J. Stat. Plan. Infer., 136 (2006),
209–220. https://doi.org/10.1016/j.jspi.2004.06.023
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Appendix

Details about the truncated gamma model

The truncated gamma distribution in the interval (0, 1) has pdf given by

f (x; a, b) =
ba

Γ(a)G(b, a)
xa−1e−bx, x ∈ (0, 1), a, b > 0.

It is straightforward that

E(X) =
aG(b, a + 1, 1)

bG(b, a, 1)
and E(log X) =

∫ 1

0

ba

Γ(a)G(b, a)
log(x)xa−1e−bxdx.

Note that the convergence of E(log X) because

E(log X) =
∫ 1

0

ba

Γ(a)G(b, a)
log(x)xa−1e−bxdx

≤

∫ +∞

0

ba

Γ(a)G(b, a)
log(x)xa−1e−bxdx = E(log W),

where W ∼ G(a, b) and then, E(log W) = ψ(a) − log(b), where ψ(·) denotes the digamma function.

Codes for the EM algorithm in R

x=c(33,40,46,41,31,37,41,56,45,31,40,35,33,43,36,36,48,45,51,44,38,36,40,

32,51,37,43,33,35,44,41,41,33,45,38,43,62,45,51,39,35,58,48,35,43,49,43,

39,39,40,39,45,48,43,45,36,40,36,47,35,40,39,44,37,36,38,37,41,38,36,36,

48,37,40,38,37,37,38,49,66,39,45,37,35,39,52,66,51,39,64,59,36,36,36,41,

41,39,45,40,37,33,66,38,59,38,41,45,35,43,39,74,63,37,45,52,43,44,52,36,

43,46,40,43,29,39,53,32,41,52,31,46,48,49,41,32,37,29,43,40,47,45,38,28,

30,40,36,37,38,37,33,30,34,38,45,40,31,39,31,31,38,32,34,45,39,31,29,39,

36,34,55,38,37,36,34,44,32,54,30,39,30,41,33,36,39,33,33,30,40,44,61,34,

26,38,26,34,36,28,36,43,35,43,37,40,35,36,28,41,30,31,48,43,43,49,36,38,

30,33,35,36,45,29,43,33,39,38,29,38,41,31,35,40,33,51,33,40,45,32,29,35,

37,35,30,32,39,32,39,38,39,83,30,33,39,33,36,39,44,31,43,44,43,41,101,

37,33)

EM.algorithm<-function(par, x, prec=1e-3, max.iter=1000)

{llike.schi2<-function(par,x){

sigma=par[1];alpha=par[2];q=par[3]

ll=log(q)+q*log(2*sigma)-lgamma(alpha/2)-(q+1)*log(x)+lgamma(alpha/2+q)

+pgamma(x/(2*sigma),shape=alpha/2+q,scale=1, log.p=TRUE)

-sum(ll)}

par0<-par;i=1; dif=10

while(i<=max.iter & dif>prec)

{aux<-E.step(x, par0);v=aux$v; logv=aux$logv

alpha.new=optim(llike.schi.c, par=par0[2], sigma=par0[1], x=x, v=v,
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logv=logv, method="Brent", lower=0, upper=10000)$par

q.new=-1/(mean(logv));sigma.new=mean(x*v)/alpha.new

par=c(sigma.new, alpha.new, q.new)

dif=max(abs(par0-par));par0=par;i=i+1}

se=sqrt(diag(solve(hessian(f=llike.schi2,x0=par0,x=x))))

par0=cbind(par0, se);colnames(par0)=c("estimate","se")

rownames(par0)=c("sigma","alpha","q")

list(estimate=par0, logLik=-llike.schi2(par0, x))}

sigma=0.278; alpha=122.335; q=6.588 ##initial values

EM.algorithm(c(sigma,alpha,q),x)
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