Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/151195
| Título: | Leveraging an Atmospheric Foundational Model for Subregional Sea Surface Temperature Forecasting | Autores/as: | Medina, Víctor Cuervo-Londoño, Giovanny A. Sánchez, Javier |
Clasificación UNESCO: | 120304 Inteligencia artificial 251007 Oceanografía física |
Palabras clave: | Forecasting Sea Surface Temperature Upwelling System Oceanography Foundational Model, et al. |
Fecha de publicación: | 2025 | Publicación seriada: | ArXiv.org | Resumen: | The accurate prediction of oceanographic variables is crucial for understanding climate change, managing marine resources, and optimizing maritime activities. Traditional ocean forecasting relies on numerical models; however, these approaches face limitations in terms of computational cost and scalability. In this study, we adapt Aurora, a foundational deep learning model originally designed for atmospheric forecasting, to predict sea surface temperature (SST) in the Canary Upwelling System. By fine-tuning this model with high-resolution oceanographic reanalysis data, we demonstrate its ability to capture complex spatiotemporal patterns while reducing computational demands. Our methodology involves a staged fine-tuning process, incorporating latitude-weighted error metrics and optimizing hyperparameters for efficient learning. The experimental results show that the model achieves a low RMSE of 0.119K, maintaining high anomaly correlation coefficients (ACC $\approx 0.997$). The model successfully reproduces large-scale SST structures but faces challenges in capturing finer details in coastal regions. This work contributes to the field of data-driven ocean forecasting by demonstrating the feasibility of using deep learning models pre-trained in different domains for oceanic applications. Future improvements include integrating additional oceanographic variables, increasing spatial resolution, and exploring physics-informed neural networks to enhance interpretability and understanding. These advancements can improve climate modeling and ocean prediction accuracy, supporting decision-making in environmental and economic sectors. | URI: | https://accedacris.ulpgc.es/jspui/handle/10553/151195 | ISSN: | 2331-8422 | DOI: | 10.48550/arXiv.2510.25563 | Fuente: | ArXiv.org. [2331-8422], v. 1, p. 1-18, 29 Oct 2025 |
| Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.