Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/151195
DC FieldValueLanguage
dc.contributor.authorMedina, Víctoren_US
dc.contributor.authorCuervo-Londoño, Giovanny A.en_US
dc.contributor.authorSánchez, Javieren_US
dc.date.accessioned2025-11-05T17:57:02Z-
dc.date.available2025-11-05T17:57:02Z-
dc.date.issued2025en_US
dc.identifier.issn2331-8422en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/151195-
dc.description.abstractThe accurate prediction of oceanographic variables is crucial for understanding climate change, managing marine resources, and optimizing maritime activities. Traditional ocean forecasting relies on numerical models; however, these approaches face limitations in terms of computational cost and scalability. In this study, we adapt Aurora, a foundational deep learning model originally designed for atmospheric forecasting, to predict sea surface temperature (SST) in the Canary Upwelling System. By fine-tuning this model with high-resolution oceanographic reanalysis data, we demonstrate its ability to capture complex spatiotemporal patterns while reducing computational demands. Our methodology involves a staged fine-tuning process, incorporating latitude-weighted error metrics and optimizing hyperparameters for efficient learning. The experimental results show that the model achieves a low RMSE of 0.119K, maintaining high anomaly correlation coefficients (ACC $\approx 0.997$). The model successfully reproduces large-scale SST structures but faces challenges in capturing finer details in coastal regions. This work contributes to the field of data-driven ocean forecasting by demonstrating the feasibility of using deep learning models pre-trained in different domains for oceanic applications. Future improvements include integrating additional oceanographic variables, increasing spatial resolution, and exploring physics-informed neural networks to enhance interpretability and understanding. These advancements can improve climate modeling and ocean prediction accuracy, supporting decision-making in environmental and economic sectors.en_US
dc.languageengen_US
dc.relation.ispartofArXiv.orgen_US
dc.sourceArXiv.org. [2331-8422], v. 1, p. 1-18, 29 Oct 2025en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject251007 Oceanografía físicaen_US
dc.subject.otherForecastingen_US
dc.subject.otherSea Surface Temperatureen_US
dc.subject.otherUpwelling Systemen_US
dc.subject.otherOceanographyen_US
dc.subject.otherFoundational Modelen_US
dc.subject.otherDeep Learningen_US
dc.titleLeveraging an Atmospheric Foundational Model for Subregional Sea Surface Temperature Forecastingen_US
dc.typeArticleen_US
dc.identifier.doi10.48550/arXiv.2510.25563en_US
dc.description.lastpage18en_US
dc.description.firstpage1en_US
dc.relation.volume1en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages18en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-8514-4350-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad-
crisitem.author.fullNameSánchez Pérez, Javier-
Appears in Collections:Artículos
Adobe PDF (2,03 MB)
Show simple item record

Page view(s)

93
checked on Jan 16, 2026

Download(s)

27
checked on Jan 16, 2026

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.