Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/15087
Título: | Improving gender classification accuracy in the wild | Autores/as: | Castrilloń-Santana, Modesto Lorenzo-Navarro, Javier Ramoń-Balmaseda, Enrique |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Gender recognition LBP HOG |
Fecha de publicación: | 2013 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 18th Iberoamerican Congress on Pattern Recognition, CIARP 2013 | Resumen: | In this paper, we focus on gender recognition in challenging large scale scenarios. Firstly, we review the literature results achieved for the problem in large datasets, and select the currently hardest dataset: The Images of Groups. Secondly, we study the extraction of features from the face and its local context to improve the recognition accuracy. Diff erent descriptors, resolutions and classfii ers are studied, overcoming previous literature results, reaching an accuracy of 89.8%. | URI: | http://hdl.handle.net/10553/15087 | ISBN: | 9783642418266 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-41827-3_34 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 8259 LNCS, p. 270-277 |
Colección: | Actas de congresos |
Citas SCOPUSTM
18
actualizado el 17-nov-2024
Visitas
80
actualizado el 27-ene-2024
Descargas
242
actualizado el 27-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Este elemento está sujeto a una licencia Licencia Creative Commons