Please use this identifier to cite or link to this item:
Title: Viola-Jones based detectors: how much affects the training set?
Authors: Castrillón-Santana, Modesto 
Hernandez-Sosa, Daniel 
Lorenzo-Navarro, Javier 
UNESCO Clasification: 120304 Inteligencia artificial
Keywords: Viola-Jones detectors
Facial feature detection
Training sets
Issue Date: 2011
Publisher: Springer 
Project: Tecnicas de Visión Para la Interacción en Entornos de Interior Con Elaboración Mapas Cognitivos en Sistemas Perceptuales Heterogéneos. 
Journal: Lecture Notes in Computer Science 
Conference: 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA) 
5th Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA 2011 
Abstract: This paper presents a study on the facial feature detection performance achieved using the Viola-Jones framework. A set of classi- ers using two di erent focuses to gather the training samples is created and tested on four di erent datasets covering a wide range of possibili- ties. The results achieved should serve researchers to choose the classi er that better ts their demands.
ISBN: 978-3-642-21256-7
ISSN: 0302-9743
DOI: 10.1007/978-3-642-21257-4_37
Source: Vitrià J., Sanches J.M., Hernández M. (eds) Pattern Recognition and Image Analysis. IbPRIA 2011. Lecture Notes in Computer Science, vol 6669. Springer, Berlin, Heidelberg, v. 6669 LNCS, p. 297-304
Appears in Collections:Actas de congresos
Adobe PDF (293,74 kB)
Show full item record

Google ScholarTM




Export metadata

This item is licensed under a Creative Commons License Creative Commons