Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/15079
Title: Viola-Jones based detectors: how much affects the training set?
Authors: Castrillón-Santana, Modesto 
Hernandez-Sosa, Daniel 
Lorenzo-Navarro, Javier 
UNESCO Clasification: 120304 Inteligencia artificial
Keywords: Viola-Jones detectors
Facial feature detection
Training sets
Issue Date: 2011
Publisher: Springer
Project: Tecnicas de Visión Para la Interacción en Entornos de Interior Con Elaboración Mapas Cognitivos en Sistemas Perceptuales Heterogéneos. 
Journal: Lecture Notes in Computer Science 
Conference: 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA) 
5th Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA 2011 
Abstract: This paper presents a study on the facial feature detection performance achieved using the Viola-Jones framework. A set of classi- ers using two di erent focuses to gather the training samples is created and tested on four di erent datasets covering a wide range of possibili- ties. The results achieved should serve researchers to choose the classi er that better ts their demands.
URI: http://hdl.handle.net/10553/15079
ISBN: 978-3-642-21256-7
ISSN: 0302-9743
DOI: 10.1007/978-3-642-21257-4_37
Source: Vitrià J., Sanches J.M., Hernández M. (eds) Pattern Recognition and Image Analysis. IbPRIA 2011. Lecture Notes in Computer Science, vol 6669. Springer, Berlin, Heidelberg, v. 6669 LNCS, p. 297-304
Appears in Collections:Actas de congresos
Thumbnail
Postprint
Adobe PDF (293,74 kB)
Show full item record

SCOPUSTM   
Citations

1
checked on Sep 26, 2021

WEB OF SCIENCETM
Citations

1
checked on Sep 26, 2021

Page view(s)

44
checked on Sep 11, 2021

Download(s)

66
checked on Sep 11, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



This item is licensed under a Creative Commons License Creative Commons