Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/15077
Título: | A performance based study on gender recognition in large datasets | Autores/as: | Díaz Cabrera, Moisés Lorenzo Navarro, José Javier Castrillón-Santana, Modesto |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Gender recognition BEFIT Classiffier fusion LFW MORPH |
Fecha de publicación: | 2012 | Resumen: | Gender recognition has achieved impressive results based on the face appearance in controlled datasets. Its application in the wild and large datasets is still a challenging task for researchers. In this paper, we make use of classical techniques to analyze their performance in controlled and uncontrolled condition respectively with the LFW and MORPH datasets. For both sets the benchmarking protocol follows the 5-fold cross-validation proposed by the BEFIT challenge. | URI: | http://hdl.handle.net/10553/15077 | Fuente: | VI Jornadas de Reconocimiento Biométrico de Personas (JRBP12). Las Palmas de Gran Canaria. 2012 |
Colección: | Actas de congresos |
Este elemento está sujeto a una licencia Licencia Creative Commons