Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/150431
Title: Multi-Year Long-Term Person Re-Identification Using Gait and HAR Features
Authors: Freire Obregón, David Sebastián 
Santana Jaria, Oliverio Jesús 
Lorenzo Navarro, José Javier 
Hernández Sosa, José Daniel 
Castrillón Santana, Modesto Fernando 
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
Keywords: Person re-identification
Biometrics
Gait
Human action recognition
Issue Date: 2025
Project: Infraestructura de Computación Científica Para Aplicaciones de Inteligencia Artificialy Simulación Numérica en Medioambientey Gestión de Energías Renovables (Iusiani-Ods) 
Interaccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social 
Journal: Pattern Recognition 
Abstract: We propose a two-stream person re-identification (Re-ID) framework that integrates gait and human action recognition (HAR) through cross-attention fusion. The model processes gait sequences via a BiLSTM-based encoder to capture temporal motion dynamics. At the same time, HAR embeddings are extracted using pre-trained video backbones and distilled into compact behavioral features. These two modalities are fused using a cross-attention mechanism, enriching gait-based identity representations with context-aware activity cues. We evaluate our method on a newly curated long-term spatio-temporal dataset of ultra-distance runners captured in natural outdoor settings across multiple locations spanning three years (2020 to 2023). Experimental results demonstrate that integrating HAR significantly enhances gait-based Re-ID performance. Compared to gait-only models, our approach yields a 12% improvement in mean Average Precision (mAP) in cross-year scenarios and up to an 11.6% gain in same-year evaluations. The HAR-enhanced models also exhibit faster convergence and higher Rank-1 accuracy, establishing the effectiveness of multi-modal motion-based representations for long-term, real-world person Re-ID.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/150431
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2025.112627
Source: Pattern Recognition [ISSN: 0031-3203], vol. 166, PR 112627, (2025)
Appears in Collections:Artículos
Adobe PDF (3,35 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.