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ARTICLE INFO ABSTRACT

Keywords: We propose a two-stream person re-identification (Re-ID) framework that integrates gait and human action recog-

P?rson r‘e-ldentlﬁcatlon nition (HAR) through cross-attention fusion. The model processes gait sequences via a BILSTM-based encoder to

CB;O,memcs capture temporal motion dynamics. At the same time, HAR embeddings are extracted using pre-trained video
ait

backbones and distilled into compact behavioral features. These two modalities are fused using a cross-attention
mechanism, enriching gait-based identity representations with context-aware activity cues. We evaluate our
method on a newly curated long-term spatio-temporal dataset of ultra-distance runners captured in natural out-
door settings across multiple locations spanning three years (2020 to 2023). Experimental results demonstrate
that integrating HAR significantly enhances gait-based Re-ID performance. Compared to gait-only models, our ap-
proach yields a 12 % improvement in mean Average Precision (mAP) in cross-year scenarios and up to an 11.6 %
gain in same-year evaluations. The HAR-enhanced models also exhibit faster convergence and higher Rank-1
accuracy, establishing the effectiveness of multi-modal motion-based representations for long-term, real-world

Human action recognition

person Re-ID.

1. Introduction

Humans can recognize familiar individuals across diverse contexts
and times. Biometrics automates this process using physical, chemical,
or behavioral traits [1]. Typically, biometric verification systems as-
sume a known gallery of identities created during registration. In con-
trast, when identities are not pre-registered, the task shifts to linking
observations of the same individual across time and space, regardless
of their true name. This problem, known as person re-identification
(Re-ID), involves retrieving an individual across different cameras or
time spans [2]. In this work, we focus on supervised Re-ID, where la-
beled identities guide the learning of embeddings. Most research em-
phasizes short-term image-based Re-ID, where appearance remains sta-
ble. Real deployments, however, require long-term Re-ID, where cloth-
ing and visual cues change over time. Video provides richer temporal
information, with gait serving as a stable biometric foundation. Nev-
ertheless, benchmarks for long-term, video-based Re-ID remain scarce.
DeepChange [3] is among the few, though its imbalance in identity fre-
quency poses challenges, and its use in video-based scenarios is limited.
Long-term Re-ID in crowded, dynamic environments is particularly dif-
ficult: individuals may look alike, appear briefly, or undergo occlusions,
motion blur, and domain shifts. Appearance-based cues often fail under
such conditions. Motion signals such as gait, together with human ac-
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tion recognition (HAR), offer complementary stability and behavioral
context. Despite this, they are rarely combined in trainable, end-to-end
systems.

Our main contributions are as follows. First, we propose a two-
stream architecture that combines gait and HAR features for person Re-
ID. A gait dynamics is learned in a structured way by a BiLSTM branch,
and a light-weight and well-cited baseline in video recognition is ob-
tained by the HAR branch, producing compact clip-level embeddings by
global-temporal average pooling, in order to keep the auxiliary branch
light-weight. Then, we incorporate a cross-attention scheme enabling in-
teractive mixing of the two feature streams, allowing for a flexible com-
bination of activity and motion cues. We utilized a triplet loss function
to uncover discriminative and generalizable representations. Second, we
introduce a new dataset collected in unconstrained environments, where
ultra-distance race participants were recorded at two locations in 2020
and at two additional locations in 2023. This design facilitates evalua-
tion under both short-term conditions (same-day/within-year) and long-
term conditions (across multiple years), thereby capturing realistic vari-
ations in appearance, viewpoint, and environment.

Experiments show that fusing gait and HAR outperforms single-
stream and visual-only baselines, yielding more robust embeddings. Re-
sults highlight the potential of motion-based multimodal representations
for Re-ID in unconstrained conditions.
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Fig. 1. Pipeline of the proposed two-stream architecture. Gait and HAR features are extracted independently, aligned in dimension, and fused via a cross-attention
mechanism where gait attends to HAR. The fused embedding is used for identity representation. This design prioritizes gait as the primary cue while enriching it

with complementary HAR context.

2. Related work

Person Re-ID has traditionally focused on visual appearance cues
such as color, clothing, and facial features. However, in real-world long-
term scenarios involving large-scale outdoor events or cross-year com-
parisons, appearance cues often fall short due to lighting variations,
occlusions, and clothing changes [4]. To address these challenges, re-
searchers have explored motion-based modalities such as gait as com-
plementary or alternative identity signals [5]. Our work builds on this
line of research by jointly modeling gait and HAR in a unified architec-
ture for spatio-temporal Re-ID [6].

Re-ID in time and space. Spatio-temporal Re-ID aims to recog-
nize individuals across significant temporal and spatial gaps, where
appearance-based models are particularly vulnerable to domain shift
and context changes [7]. Existing methods often address these issues by
incorporating temporal modeling [8] or leveraging soft biometrics such
as gait [9]. In this regard, gait is especially promising in long-term Re-
ID due to its inherent stability and robustness against changes in cloth-
ing and viewpoint. However, many current models still struggle when
faced with unconstrained real-world variability, such as that found in
long-term datasets.

Appearance-based gait recognition. Gait recognition methods can
be broadly categorized into skeleton-based and appearance-based ap-
proaches [9]. Our work considers 2D silhouettes used to extract dis-
criminative motion patterns. More recent deep learning-based models,
such as GaitSet [10], use set-based learning to handle unaligned input
frames. GaitPart [11] introduces part-based modeling to capture local
motion features better. These approaches have demonstrated strong per-
formance under controlled conditions but often lack robustness in dy-
namic, real-world environments.

HAR and multi-modal cues. HAR provides a higher-level under-
standing of behavior that can complement gait in identity reason-
ing. Although HAR has been widely studied for activity classification
tasks [12], its use in person Re-ID remains limited. Recently, pre-trained
HAR models for person Re-ID in ultra-distance sports scenarios have
been explored, emphasizing the impact of fatigue-induced movement
changes on recognition performance [13]. However, their approach
does not explicitly incorporate gait analysis. We aim to bridge this gap
by jointly embedding HAR and gait cues, enabling richer, context-aware
representations for spatio-temporal Re-ID.

Datasets. Several benchmark datasets support gait-based person
Re-ID research. CASIA-B [14] remains one of the most widely used
datasets, featuring gait sequences from 124 subjects under varying view-
points and conditions (e.g., normal, bag-carrying, and coat-wearing).
The OU-ISIR gait datasets, including the large-scale OU-MVLP [15], pro-
vide extensive samples across different age groups, clothing variations,
and viewpoints. OU-MVLP, in particular, includes over 10,000 subjects
captured from 14 view angles, making it one of the most extensive
multi-view gait datasets available. GREW [16] is a recent large-scale
dataset collected from real-world surveillance footage containing over

26,000 subjects in unconstrained environments. Other datasets, such
as FVG [17], contribute to advancing cross-view and in-the-wild gait
recognition by offering high-quality visual gait data under naturalistic
conditions.

However, these datasets typically lack long-term variability, as they
do not include recordings of the same individuals across multiple years.
In contrast, one of our key contributions is a new dataset comprising
real-world race footage recorded over three years (2020 and 2023) and
from different distant locations within the same year. This enables the
evaluation of gait-based Re-ID under realistic conditions of appearance
change, long-term temporal gaps, and spatial variability, a scenario not
addressed in existing benchmarks.

3. Methodology

This section describes the proposed two-stream architecture for
spatio-temporal person Re-ID (see Fig. 1), which integrates gait and hu-
man action information through pre-trained backbones. We first formal-
ize the problem, then detail the structure and roles of the gait and HAR
backbones, the fusion strategy based on cross-attention, and finally, the
training objective using triplet loss with semi-hard negative sampling.

3.1. Problem formulation

Let D = {(v;, )} fi . be a dataset of N raw video recordings, where:

¢ y; denotes the ith input video captured at a particular time and lo-
cation,

e y; € {1,...,C} is the identity label associated with v;.

Each video v; is processed through two modality-specific pipelines
to extract temporal embeddings for gait and HAR.

Gait Processing Pipeline. The gait modality aims to model the sub-
tle motion patterns unique to each individual. To extract these cues, the
raw video v; is first processed into a sequence of binary silhouettes by
combining person detection and pose estimation. Specifically, we use
YOLOVS8 [18] and Bot-SORT [19] for robust multi-object tracking, en-
abling consistent localization of the subject across frames. Silhouettes
are later generated using SAMURAI [20]. The resulting silhouette se-
quence serves as input to a pre-trained gait encoder Bg,yr, which has
been trained on large-scale public datasets such as CASIA-B, OUMVLP,
and GREW.

The encoder produces a feature tensor from the silhouette sequence:

EiGAIT — BGAIT(U?ﬂhouenes) e RDgXP

Where D, is the feature dimension and P represents the number of hor-
izontal partitions of the body used during Horizontal Pyramid Pooling
(HPP). This output captures part-level information rather than tempo-
ral dynamics; each row corresponds to a distinct horizontal region of
the body (e.g., upper torso, lower legs), not a time step.
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To ensure stability, each part embedding vector is first standardized:

GAITy.
EZN pl = Hirain

E,’[:’P]=

Otrain
and then L2-normalized:

A~ E~,~[1,P]
El:.p)= ="+
1E; L=, plllo

This results in a sequence of normalized part-based embeddings
ESAT € RPs*P | Although they form a sequence-like structure, the or-
der of parts corresponds to spatial locations rather than chronological
time.

Part-wise Encoding. To capture the structured spatial information en-
coded in the body parts, the normalized part descriptors £SAT are inter-
preted as a sequence and passed through a BiLSTM. While this sequence
does not represent time, the recurrent architecture allows for context
modeling across adjacent body regions. This allows the model to cap-
ture structured co-movement patterns (e.g., torso-leg coordination) that
are informative for identity. We use a bidirectional LSTM to aggregate
such spatial dependencies. Let E; = (ESAT)T € RP*Ps, where the part
dimension P is treated as the temporal axis.

hSATT = ¢ (BiLSTM,s4 (Dropout(BiLSTM, 55(E)))))

Here, ¢ denotes a dense layer with ReLU activation. This config-
uration models spatial body part embeddings as a pseudo-temporal se-
quence, allowing the BiLSTM to capture part-to-part relational dynamics
relevant to identity.

HAR Processing Pipeline. The HAR stream is designed to capture
high-level activity patterns from the subject’s movement. However, raw
videos may contain multiple actors, visual clutter, or background dis-
tractions To ensure that the extracted embeddings focus solely on the
subject of interest, we apply a context-constrained preprocessing step.

Step 1: Video Preprocessing - Context Constraint. We use the silhouettes
previously computed to crop a tight region around the individual in each
frame. The rest of the frame is suppressed by superimposing the silhou-
ette onto a static mode frame 7 For an individual i at time ¢ € [0, T, let
Sil®(¢) be the silhouette, and F®(r) the raw frame. The preprocessed
frame is defined as:

F'D(t) = Crop(FO (1), Sil () + (1 = 1gy0)) - f

This produces a context-constrained video vfonext = {F’(”(t)}tT=0 fo-
cused solely on the individual.

Step 2: HAR Feature Extraction. The processed video 0% is then
passed through a pre-trained action recognition backbone Bjar, Which
outputs a sequence of temporal embeddings:

HAR context T'xD,
E = Byar(vs ) € R *En

where T’ is the number of temporal segments or frames output by the
HAR backbone and D, is the dimensionality of each HAR embedding
vector.

After extracting the sequence of embeddings from the HAR back-
bone, we apply normalization frame-wise before pooling. First, the em-
beddings are standardized using the mean and standard deviation com-
puted across the training set, and then, each frame is L2-normalized:

EHAR _ | HAR
FHAR _ i Tmain  pAHAR _
i HAR ’ i
train

EHAR
IEFAR ],

Although temporal modeling techniques, such as those used in gait
recognition, aim to capture patterns, we observed that naive temporal
processing alone did not yield significant improvements in Re-ID perfor-

mance. Then, average pooling is applied over the temporal dimension
to aggregate frame-level features into a sequence-level representation:

RHAR = AvgPool(EFAR) € RP
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Since the output dimensions of the gait and HAR streams may differ
(D, # D), we apply a projection layer to transform the HAR represen-
tation into the common dimension D:

R = B € R

Both h%AIT € RP and hHAR € RP are projected into a shared embed-
ding space of dimension D, where D denotes the common projection
size (i.e., D, = D), ensuring compatibility for subsequent fusion. The
resulting pair of embeddings (WS4, hHAR) are aligned in dimension and
subsequently used for cross-attention-based fusion and identity embed-
ding computation.

Rationale for temporal aggregation. In the HAR stream, we use global
temporal average pooling in order to obtain clip-level embeddings. This
keeps the HAR stream lightweight, computationally robust, and easy to
train in parallel with the combining module, aligning with typical prac-
tice in recent video recognition backbones (e.g., C2D [21], I3D [22],
SlowFast [23], X3D [24]). Shallow recurrent layers and temporal 1D
convolutions in our experiments did not show consistent improvement
under long-term Re-ID, while average pooling kept accuracy with a mod-
est cost. Even though more intricate aggregation methods are potentially
available (e.g., self-attention, Transformer pooling), we intentionally se-
lect simplicity and robustness in order to uncover the isolated contribu-
tion of HAR cues towards gait-based recognition.

3.2. Cross-attention fusion

We apply a cross-attention mechanism to fuse both modalities, where
the gait embedding attends to the HAR representation. Given the aligned
embeddings (h®AT, BHAR) for sample i, we define:

0, = hOAIT ¢ RIXD
i=n

K, =V, = h"R e RIXP

i i

The attention weights and attended HAR embedding are computed
as:

0K
a; = softmax NG , zi=a -V,
D

We then concatenate the original gait embedding with the attended
HAR vector and apply a projection layer ¢ to obtain the final fused
identity representation:

fi = ey (I3 2,1) € RP

where [ ; ] denotes concatenation and $proj IS @ dense projection layer.

In this setup, gait is defined as the querying modality (serving as
the Query in the attention mechanism) because the primary objective
of the framework is identity recognition rather than activity categoriza-
tion. Gait embeddings are explicitly trained to discriminate identities
and thus form the base representation to be preserved. HAR features, in
turn, provide the Keys and Values, offering complementary contextual
cues that enrich the gait signal without shifting the focus toward action
recognition. Through the attention mechanism, the model selectively
integrates relevant HAR information into the gait embedding. The re-
sulting attended representation is then combined with the original gait
embedding, ensuring that gait remains the dominant identity signal. Fi-
nally, a projection layer fuses both sources into a unified identity repre-
sentation in a common embedding space, where samples can be directly
compared using L2 distance for Re-ID.

3.3. Triplet loss for metric learning

To teach the model how to tell different people apart, we use a triplet
loss function. It compares three examples at a time:

¢ an anchor (a), a reference video of a person,
e a positive sample (p), another video of the same person,
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¢ a negative sample (n), a video of a different person.

The goal is to make sure that the model places the anchor closer to
the positive than to the negative in the embedding space, with some
extra margin a for safety. The loss is defined as:

N
Loiper = 3, max (ILf (@) = F@PIE ~ 1/ (a)) — f@npI3 +a. 0)

Jj=1

Here:

e f(-) is the embedding function (i.e., the model’s output for each in-
put),

e || -], is the L2 distance between embeddings,

e q is a fixed margin (e.g., 0.5),

e The max(-, 0) makes sure we only penalize the model when the neg-
ative is too close to the anchor.

If the model already separates the anchor and negative correctly, we
don’t penalize it. If it doesn’t, the loss becomes positive and the model
learns from that mistake.

To construct effective triplets, we apply semi-hard negative mining,
selecting negatives that satisfy:

£ @ = f@I5 < IIf(@ = f®I5 < If(@ - FD; +a

We define a modality-aware distance used both in the loss function
and during negative sample selection:

deombined (%) = 4 - [1AGAT = AEAT [l o+ (1 = ) - IR — AR

This combined distance selects negative samples across identities and
checkpoints during mining, with 1 = 0.5 balancing the contribution of
gait and HAR modalities equally.

4. Dataset

Our study is based on a dataset collected at four different loca-
tions during the 2020 and 2023 editions of the Transgrancanaria ultra-
distance running competition. In this event, athletes compete on a 128-
kilometer course that typically takes between 12 and 30 h to complete.
Each sample in the dataset consists of a short video clip, typically last-
ing no more than ten s, recorded at 25 frames per second. The dataset
does not exhibit a symmetric structure in which each runner is recorded
at every location. Instead, most runners appear in two locations, while
a subset of fifteen runners appear in three within the training set and
seventeen in three within the test set. As a result, location pairs differ
in how much they share subjects. Some pairs involve identical sets of
runners, while others involve partially overlapping or entirely distinct
subsets. This necessitates a pair-level analysis when interpreting train-
ing and test splits, as seen in Table 1.

The training set of the dataset comprises a total of 423 labeled videos,
each corresponding to a unique observation of a runner at a specific
Recording Point (RP), identified by a location-year code (RPloc_year).
These observations are distributed across four distinct points in differ-
ent years: RP0_20, RP1_20, RP2 23, and RP3_23. Runners are most of-
ten recorded in exactly two of these locations, forming 234 unique un-
ordered pairs, which serve as the fundamental unit of co-occurrence
in the analysis. The pair RP0_20 « RP1_20 emerges as the most fre-
quent, appearing in 158 instances, indicating a strong connection be-
tween these two 2020 locations. Similarly, the 2023 pair RP2 23 <
RP3_23 appears 39 times, reflecting a notable but less dominant co-
location pattern.

The training dataset includes 15 runners who appear in three dis-
tinct locations. Each of these runners contributes three unique location
pairs, increasing the number of co-occurrence pairs without a propor-
tional increase in video samples, as explained in Table 1. Their presence
adds structural complexity to the network of relationships by connect-
ing more location pairs per individual rather than inflating the dataset
size.

Pattern Recognition 172 (2026) 112627

Table 1

Number of runners and videos per location pair in
the training and test sets. The training set contains
204 runners: 189 observed in two different locations
and 15 observed in three, resulting in a total of 423
labeled videos. Because some runners contribute to
multiple location pairs, the sum of runner and video
counts across pairs exceeds the total number of unique
training videos. The test set comprises 17 runners ob-
served in three different locations, resulting in 51 la-
beled videos.

Set Location Pair # Runners # Videos
Train  RP0_20 < RP1_20 158 316
Train  RP2.23 < RP3.23 39 78

Train RP1_20 < RP3_23 15 30

Train  RP0_20 < RP3_23 11 22

Train RP223 < RP120 6 12

Train  RP0_20 < RP2_23 5 10

Test RP1_.20 < RP2.23 17 34

Test RP1_20 < RP3_23 17 34

Test RP2_23 <~ RP3.23 17 34

Fig. 2. These dataset samples illustrate short-term and long-term Re-ID scenar-
ios. Each column corresponds to the same individual, while each row shows data
captured at different locations and years. This figure has been anonymized for
privacy purposes.

Moreover, the training dataset contains both same-year pairs, such
as RP0_20 « RP1_20 and RP2 23 « RP3_23, and cross-year pairs, in-
cluding examples like RPO_20 « RP3_23 and RP1_20 « RP2_23. These
temporal pairings provide insight into longitudinal movement patterns,
highlighting transitions and tracking continuity across years (see Fig. 2).
This structure offers a rich foundation for spatio-temporal analysis and
deeper modeling of athlete behavior across time and locations.

The test partition contains 51 videos from 17 runners, each recorded
in three locations: RP1_20, RP2_23, and RP3_23. Evaluation is per-
formed through pairwise comparisons between locations in both direc-
tions (e.g., RP1_20 to RP2_23 and RP2_23 to RP1_20), yielding six di-
rectional evaluation scenarios. For each direction, the 17 runners from
the source location are matched against the 17 runners from the tar-
get location, producing 289 comparisons per direction. This results in a
total of 1734 comparisons across the test set. The design ensures a com-
prehensive and balanced evaluation of generalization across spatial and
temporal dimensions while maintaining a subject-disjoint protocol.
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5. Gait & HAR backbones: From motion to identity

In this section, we provide a detailed description of the backbones
used for gait and HAR, highlighting their architectural design and the
type of information each captures. These modality-specific backbones
form the foundation of our two-stream framework, with the gait back-
bone focusing on fine-grained motion dynamics and the HAR backbone
capturing high-level activity patterns.

Gait Backbones. Silhouette-based gait recognition methods focus
on extracting discriminative features from silhouette sequences to iden-
tify individuals based on their walking patterns. In our work, we em-
ploy several representative models-GaitBase, GLN Phase 1, GLN Phase
2, GaitGL, GaitPart, and GaitSet-which share the common objective of
leveraging silhouette information yet differ significantly in their archi-
tectural designs. GaitSet treats gait sequences as unordered frame sets,
using temporal pooling to aggregate frame-level features without mod-
eling explicit spatial relationships. Building on this, GaitPart [11] incor-
porates part-based modeling using Focal Convolution (FConv) to extract
local features across horizontal body regions, enhancing fine-grained
spatial detail but potentially introducing sensitivity to alignment errors.
GaitGL [25] refines this approach by combining global and local fea-
ture extraction branches with 3D convolutional layers to capture holistic
and localized temporal-spatial dynamics. However, its added complex-
ity does not always yield consistent improvements in real-world scenar-
ios. GLN Phase 1 introduces a grouped latent representation strategy
to disentangle feature learning, while GLN Phase 2 extends this with
a refinement stage to progressively enhance feature granularity across
network layers [26]. In contrast, GaitBase [27] adopts a deep residual
network architecture to serve as a strong baseline backbone, demon-
strating the benefits of increased network capacity for capturing robust
gait patterns.

As previously mentioned in Section 3, the models have been trained
and evaluated on three benchmark datasets-OU-MVLP, CASIA-B, and
GREW-which vary significantly in terms of scale, environmental condi-
tions, and overall complexity. OU-MVLP [15] is a large-scale constrained
dataset collected in controlled indoor conditions with consistent camera
viewpoints, offering extensive identity coverage but limited environ-
mental variation. Although smaller in scale, CASIA-B [14] introduces
covariates such as clothing and carrying conditions in a multi-view in-
door setup, making it valuable for analyzing specific intra-subject vari-
ations. In contrast, GREW [16] is a real-world, in-the-wild dataset cap-
tured in unconstrained environments with diverse backgrounds, lighting
conditions, and occlusions, reflecting practical deployment challenges
and more related to the running scenario of our dataset. Due to these
differences, not all models are trained across all datasets. Some archi-
tectures, particularly those relying on sensitive spatial modeling (e.g.,
GaitPart, GaitGL), may struggle to generalize on GREW without exten-
sive reconfiguration. Furthermore, training high-capacity models such
as GLN Phase 2 or GaitBase on GREW can be computationally demand-
ing due to the dataset’s scale and complexity. Consequently, model train-
ing choices are influenced by dataset characteristics and the architec-
tural robustness and scalability of the gait backbones.

HAR Backbones. We employed a diverse set of backbone archi-
tectures with varying capacities to model spatial and temporal dy-
namics, including C2D, I3D, Slow8x8, Slow4x16, SlowFast8x8, Slow-
Fast4x16, and X3D variants (L, M, S, XS). The C2D model [21] em-
ploys 2D convolutions on individual frames, treating the video as a se-
quence of static images. While efficient, it lacks explicit temporal mod-
eling. I3D [22] overcomes this by inflating 2D filters to 3D and using
two streams (RGB and optical flow) to capture appearance and motion
jointly. SlowNet [28] processes fewer frames at high spatial resolution
to model long-term patterns; we use Slow8x8 and Slow4x16 to vary
temporal coverage.

SlowFast [23] adds a high-frame-rate path for fast motion, com-
plementing the slow path’s semantic focus. We evaluate SLF_8x8 and
SLF_4x16. The X3D family [24] expands a 2D base model into spatiotem-
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poral variants via progressive scaling. The four X3D versions differ in
complexity and cost: XS applies multiple scaling stages, S reduces the
frame rate, M increases spatial resolution, and L adds depth through
deeper residual blocks. This structured design strikes a balance between
efficiency and performance.

Several models (I3D, Slow, SlowFast) are enhanced with Non-local
Networks (NLN) [29], which compute global pairwise dependencies
across space and time. All backbones are pre-trained on Kinetics-
400 [30], enabling robust and transferable HAR performance across var-
ied conditions.

6. Experimental setup

Baselines. As baseline models for person Re-ID, we consider OS-
Net, DenseNet-121, MobileNet V2, and AlignedReID. All models are
trained on the Market1501 dataset, a widely used benchmark in the
Re-ID community. OSNet (Omni-Scale Network) [31] is designed explic-
itly for person Re-ID, featuring a multi-stream architecture that captures
local and global features through dynamic, omni-scale feature aggrega-
tion while remaining lightweight and efficient. DenseNet-121 [32] is a
popular backbone known for its densely connected layers, which en-
courage feature reuse and efficient gradient propagation, offering ro-
bust performance at a higher computational cost. MobileNet V2 [33] is
a compact and efficient model optimized for mobile and real-time appli-
cations, utilizing depthwise separable convolutions to significantly re-
duce model size and inference time, with a trade-off in accuracy. Aligne-
dReID [34] builds upon the ResNet backbone and incorporates local
feature alignment through part-based matching, enhancing the model’s
ability to handle misalignment and pose variation-two common chal-
lenges in Re-ID scenarios. Together, these baselines offer a range of
architectural styles, from lightweight mobile networks to specialized
Re-ID solutions. These models are adapted for our task by leveraging
tracklets extracted from the input videos. For each individual, we isolate
sequences of bounding boxes (tracklets) corresponding to their appear-
ances across the video timeline. To ensure robust and fair evaluation, we
perform multiple comparisons between different runners, averaging the
results over several runs to mitigate variance introduced by temporal
sampling or environmental noise.

Implementation details. First, the gait pipeline is pre-trained; once
fusion is enabled, we first train the fusion layers (Ir = 6e-5) and then
fine-tune the last gait layers with a reduced learning rate (Ir = 1le-
5). We trained the network with Adam. The training was conducted
using a batch size of 32, and each iteration involved generating semi-
hard triplets to enhance convergence and model robustness. The model
was trained for 2000 iterations, with evaluations performed every 500
to monitor performance. We employed the Triplet Loss with a mar-
gin (a) 0.6 to encourage a clear separation between positive and neg-
ative pairs in the embedding space. Performance was assessed using
standard retrieval metrics, including Cumulative Match Characteristic
(CMCQ) curves and mean Average Precision (mAP), reported per location
segment to capture spatial consistency across different checkpoints.

Experimental protocol. We performed a five times 10-fold split
strategy on the training set. In each run, eight folds were used for
training, one for validation, and one for internal testing. This approach
thoroughly evaluated various hyperparameter configurations and fusion
strategies while keeping the external test set completely untouched. The
configuration that achieved the best performance was then selected to
train the final model using the entire training set. The results reported in
this work are based exclusively on evaluating this final model on the un-
touched test set, ensuring a fair and unbiased assessment of the system’s
generalization capabilities.

7. Long-Term Re-ID experiments

Long-term Re-ID is a key focus of this work, as it reflects real-world
challenges where individuals must be re-identified after extended tem-
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Table 2

Long-term Re-ID using only gait features. Cross-year evaluations between
RP1_20 and RP2_23. Metrics reported as mAP / Rank-1 / Rank-5. Baseline
performances are shown in gray, and the best-performing backbone is high-
lighted in blue.

Gait Backbone RP1.20 — RP2.23 RP2 23 — RP1.20
mAP?T R1t R51 mAP?T R1t R51

MobileNet V2 [33] 11.6% 0.0% 11.8% 209% 59% 29.4%
DenseNet 121 [32] 16.9% 0.0% 29.4% 245% 59% 35.3%
OSNet [31] 319% 17.7% 52.9% 288% 11.8% 47.1%
AlignedRelD [34] 283% 11.8% 47.1% 30.1% 17.6% 41.2%
GaitBase_C [27] 453% 29.4% 64.7% 433% 23.5% 64.7%
GaitBase_O [27] 28.4% 11.8% 52.9% 349% 235% 47.1%
GLNp1_C [26] 39.0% 23.5% 58.8% 32.5% 17.6% 41.2%
GLNp2_C [26] 33.5% 17.6% 52.9% 39.1% 29.4% 47.1%
GaitGL_C [25] 49.4% 29.4% 64.7% 45.6% 29.4% 58.8%
GaitGL_G [25] 46.2% 23.5% 76.5% 46.6% 29.4% 64.7%
GaitGL_O [25] 29.4% 17.6% 353% 29.0% 11.8% 47.1%
GaitPart_C [11] 40.2% 23.5% 47.1% 349% 17.6% 64.7%
GaitPart G [11] 309% 11.8% 52.9% 456% 353% 58.8%
GaitPart O [11] 30.2% 11.8% 47.1% 28.1% 11.8% 52.9%
GaitSet_C [10] 383% 17.6% 58.8% 39.7% 17.6% 70.6%
GaitSet_G [10] 30.8% 11.8% 529% 353% 17.6% 47.1%
GaitSet_O [10] 26.0% 11.8% 353% 36.2% 23.5% 47.1%

Table 3

Long-term Re-ID using only gait features. Cross-year evaluations between
RP1_20 and RP3_23. Metrics reported as mAP / Rank-1 / Rank-5. Baseline
performances are shown in gray, and the best-performing backbone is high-
lighted in blue.

Gait Backbone RP1_20 — RP3.23 RP3_23 — RP1_20

mAP}  R1t R51 mAP{  RIt R51

MobileNet V2 [33]  14.6% 0.0%  29.4% 147% 0.0%  26.5%
DenseNet 121 [32] 19.2% 0.0%  353% 23.6% 11.8% 23.5%
OSNet [31] 19.9% 0.0%  29.4% 17.8% 0.0%  29.4%
AlignedRelD [34]  27.5% 17.6% 29.4% 241% 11.8% 35.3%
GaitBase_C [27] 38.8% 23.5% 47.1% 345% 17.6% 52.9%
GaitBase_O [27] 268% 5.9%  47.1% 32.6% 17.6% 35.3%
GLNp1_C [26] 35.6% 23.5% 47.1% 34.4% 17.6% 52.9%
GLNp2_C [26] 350% 17.6% 52.9% 39.9% 23.5% 58.8%
GaitGL_C [25] 341% 17.6% 41.2% 39.5% 29.4% 47.1%
GaitGL_G [25] 53.7% 353% 82.4% 547% 353% 70.6%
GaitGL_O [25] 341% 17.6% 529% 31.7% 11.8% 47.1%
GaitPart_C [11] 49.3% 353% 647% 50.1% 353% 76.5%
GaitPart_G [11] 47.3% 353% 58.8% 51.1% 41.2% 58.8%
GaitPart_O [11] 333% 17.6% 47.1% 34.8% 235% 47.1%
GaitSet_C [10] 40.9% 235% 70.6% 463% 29.4% 64.7%
GaitSet G [10] 20.4% 11.8% 41.2% 321% 17.6% 47.1%
GaitSet_O [10] 20.0% 59% 588% 35.4% 17.6% 58.8%

poral gaps, often under substantial changes in appearance, context, and
recording conditions.

Hereafter, the experiments are presented in two stages. First, we
evaluate different gait backbones independently to identify the most
suitable architecture for the Re-ID task. This allows us to establish a
performance baseline and analyze the standalone effectiveness of each
gait model. Second, we assess the impact of incorporating HAR embed-
dings by comparing performance before and after their integration. As
described in Section 3, the gait-only experiments use the h’.GAIT (please
refer to Fig. 1) outputs as identity embeddings for discrimination.

7.1. Gait analysis

The gait backbones analyzed in these experiments follow the
nomenclature BackboneID_DB, where BackbonelD refers to the specific
appearance-based gait backbone used, and DB denotes the dataset it
was pre-trained on: O for OU-MVLP, C for CASIA-B, and G for GREW.

Tables 2 and 3 present the performance of various gait and
appearance-based models in cross-year Re-ID scenarios, specifically
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Table 4

Long-term Re-ID fusing gait and HAR. Performance on cross-year evaluations
between RP1_20 and RP2_23 (probe — gallery). Metrics reported as mAP /
Rank-1 / Rank-5. Baseline appearance-based methods are shown in gray,
the gait-based backbone under consideration is shown in blue, and the best-
performing HAR model is highlighted in green.

HAR Backbone RP1.20 — RP2.23 RP2 23 — RP1.20

mAP?T R1t R51 mAP?T R1t R51
MobileNet V2 [33] 11.6% 0.0% 11.8% 209% 59% 29.4%
DenseNet 121 [32] 16.9% 0.0% 29.4% 24.5% 5.9% 35.3%
OSNet [31] 31.9% 17.7% 529% 28.8% 11.8% 47.1%
AlignedRelD [34] 28.3% 11.8% 47.1% 30.1% 17.6% 41.2%
GaitGL_G [25] 46.2% 23.5% 76.5% 46.6% 294% 64.7%
C2D [21] 50.2% 353% 64.7% 50.4% 35.3% 64.7%
13D [22] 49.1% 353% 588% 487% 353% 64.7%
13Dy v [29] 48.8% 29.4% 824% 486% 353% 70.6%
SL_4x16 [28] 53.8% 41.2% 76.5% 51.4% 353% 64.7%
SL 4x16,, y [29] 49.2% 353% 76.5% 50.0% 353% 64.7%
SL_8x8 [28] 459% 29.4% 76.5% 453% 294% 70.6%
SL_8x8y,n [29] 54.6% 41.2% 76.5% 47.1% 29.4% 70.6%
SLF_4x16 [23] 545% 41.2% 64.7% 46.8% 294% 64.7%
SLF_4x16, 5 [29] 49.5% 29.4% 70.6% 47.0% 294% 82.4%
SLF_8x8 [23] 519% 29.4% 76.5% 50.3% 353% 76.5%
SLF.8x8y,n [20]  48.3% 29.4% 70.6% 482% 35.3% 58.8%
X3D_L [24] 55.2% 41.2% 70.6% 51.4% 353% 70.6%
X3D_M [24] 48.2% 353% 58.8% 479% 353% 52.9%
X3D_S [24] 46.5% 29.4% 76.5% 47.3% 353% 58.8%
X3D_XS [24] 48.5% 353% 76.5% 48.0% 353% 58.8%
Table 5

Long-term Re-ID fusing gait and HAR. Performance on cross-year evaluations
between RP1_20 and RP3_23 (probe — gallery). Metrics reported as mAP /
Rank-1 / Rank-5. Baseline appearance-based methods are shown in gray,
the gait-based backbone under consideration is shown in blue, and the best-
performing HAR model is highlighted in green.

HAR Backbone RP1_20 — RP3_23 RP3_23 — RP1_20
mAP?T R1t R51 mAP1T R1t R51

MobileNet V2 [33] 14.6%  0.0% 29.4% 147% 0.0% 26.5%
DenseNet 121 [32] 19.2% 0.0% 35.3% 23.6% 11.8% 23.5%
OSNet [31] 19.9% 0.0% 29.4% 17.8% 0.0% 29.4%
AlignedRelD [34] 27.5% 17.6% 29.4% 241% 11.8% 35.3%
GaitGL_G [25] 53.7% 35.3% 82.4% 547% 353% 70.6%
C2D [21] 51.1% 353% 765% 56.5% 41.2% 76.5%
13D [22] 51.3% 29.4% 76.5% 60.0% 47.1% 70.6%
13Dy, [29] 51.3% 29.4% 824% 539% 353% 82.4%
SL_4x16 [28] 50.1% 29.4% 82.4% 53.8% 41.2% 70.6%
SL_4x16,, v [29] 52.2% 353% 76.5% 56.1% 41.2% 76.5%
SL_8x8 [28] 56.2% 35.3% 88.2% 544% 353% 76.5%
SL 8x8,, v [29] 58.0% 35.3% 88.2% 633% 471% 76.5%
SLF_4x16 [23] 53.8% 353% 765% 57.6% 41.2% 82.4%
SLF 4x16,,y [291 57.7% 41.2% 824% 56.4% 41.2% 76.5%
SLF_8x8 [23] 53.8% 29.4% 88.2% 587% 41.2% 76.5%
SLF_8x8,, x [29] 541% 29.4% 882% 61.4% 471% 76.5%
X3D_L [24] 63.8% 47.1% 824% 65.7% 529% 82.4%
X3D_M [24] 51.4% 353% 765% 543% 41.2% 76.5%
X3D_S [24] 58.3% 41.2% 88.2% 58.3% 41.2% 82.4%
X3D_XS [24] 50.9% 29.4% 76.5% 60.3% 47.1% 70.6%

between recordings from 2020 and 2023. As expected, this setting
is significantly more challenging than same-year evaluations due to
long-term appearance changes, domain shifts, and real-world varia-
tions in clothing, posture, and lighting. Appearance-based baselines
such as MobileNet V2, DenseNet 121, OSNet, and AlignedReID (high-
lighted in gray) exhibit low performance across all metrics. For in-
stance, MobileNet V2 achieves 0.0 % Rank-1 in several configurations,
and DenseNet never exceeds 11.8 % in Rank-1, underscoring their lim-
ited capacity to generalize temporally.

In contrast, gait-based models show substantially stronger perfor-
mance. In the RP1.20 — RP2_23 evaluation, GaitGL_C achieves the
highest mAP at 49.4% and ties with GaitBase_C for the best Rank-1
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Fig. 3. CMC curves for the long-term evaluation between RP1_20 and RP2_23, comparing HAR-enhanced models. GaitGL_G is shown in black dotted, and AlignedReID
(baseline) in red dotted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

score (29.4 %), while GaitGL_G obtains the highest Rank-5 accuracy
(76.5%) and a competitive mAP (46.2%). In the reverse direction
(RP2_23 — RP1_20), GaitGL_G slightly outperforms GaitGL_C in mAP
(46.6 %) and matches its Rank-1 score (29.4 %), confirming its robust-
ness when trained on in-the-wild GREW data.

Performance generally declines in the second half of the table, cov-
ering the RP1_20 « RP3_23 setting, indicating greater difficulty in this
long-term pair. Still, GaitGL_G emerges as the top performer in both
directions, achieving the highest mAP (53.7% and 54.7 %), Rank-1
(35.3%), and Rank-5 (82.4% and 70.6 %). GaitPart_C and GaitPart_G
follow closely but remain consistently behind GaitGL_G across all met-
rics. These findings highlight the importance of both model architec-
ture and training dataset, with GREW-trained backbones offering supe-
rior generalization in long-term, real-world scenarios. This establishes
GaitGL_G, i.e., GaitGL trained on GREW, as the most robust and reliable
backbone across evaluation protocols and the most suitable candidate
for further integration with HAR embeddings.

7.2. HAR integration

Tables 4 and 5 present the performance of the proposed two-stream
model on the long-term Re-ID tasks, where HAR features are inte-
grated with the gait backbone via cross-attention, as detailed in Sec-
tion 3. Compared to the gait-only baseline GaitGL_G (highlighted in
blue), adding HAR consistently improves performance across all met-
rics, particularly in mAP and Rank-1 accuracy. In the RP1_20 — RP2_23
and RP2_23 — RP1_20 scenarios, GaitGL_G achieves mAP scores of
46.2 % and 46.6 %, respectively. When fused with HAR, models such as
SL_8x8, . n> SLF_4x16, and X3D_L surpass these baselines. The best per-
former, X3D_L, improves mAP by nearly nine percentage points (55.2 %
and 51.4% mAP), with corresponding Rank-1 gains of up to 11.8% on
average. These results highlight the value of integrating temporal and
activity-level cues for long-term person Re-ID.

In the RP1_20 — RP3_23 and RP3_23 — RP1_20 evaluations, the gap
widens further. The GaitGL_G baseline yields 53.7 % and 54.7 % mAP,
while X3D L again achieves the highest scores at 63.8% and 65.7 %
mAP, representing a gain of more than ten percentage points. Similarly,
Rank-1 improves from 35.3% to 52.9% in the RP3_23 — RP1_20 di-
rection. Other strong HAR models like SLF_8x8; n, SLF_4x16, v, and
SL_8x8y n also show consistent improvements over the gait-only set-
ting.

We also present CMC curves to analyze how HAR integration im-
pacts person Re-ID performance. These curves visualize the rank-based
retrieval accuracy of the most promising HAR-enhanced configurations
(e.g.,X3D L, SL 4x16; n,and SL 8x8 ) ) in comparison with the best-
performing appearance-based baseline (AlignedReID) and the gait-only
backbone (GaitGL_G).

The CMC curves cover all four long-term settings: (RP1_20 < RP2 23,
RP1_20 < RP3_23). By highlighting the probability of correctly identi-

fying the target at various ranks, these visualizations provide deeper
insight into where HAR contributes most through early rank improve-
ments (e.g., Rank-1 and Rank-5) or enhanced overall retrieval consis-
tency.

Fig. 3 shows the CMC curves for the long-term Re-ID between
RP1_20 and RP2_23. In this more challenging setting, the integration
of HAR demonstrates consistent improvements over both the gait-only
and appearance-only baselines.

In the RP1_20 — RP2_23 direction, X3D_L achieves the best over-
all performance, with 41.2% Rank-1 accuracy and steady improve-
ments across higher ranks, reaching 94.1 % by Rank-9 and 100.0 % by
Rank-16. Slow_8x8,;y and Slow_4x16,; v also perform well, reach-
ing 76.5% Rank-5 and converging to 100.0% by Rank-17. GaitGL_G
lags at Rank-1 (23.5 %) but catches up quickly by Rank-4 and matches
the HAR-enhanced models in the final ranks. AlignedReID performs the
worst across all ranks, achieving only 11.8 % at Rank-1 and remaining
below 50 % until Rank-5.

In the reverse direction (RP2_23 — RP1_20), all three HAR-enhanced
models maintain their advantage. X3D_L leads early with 35.3 % Rank-1
and reaches 88.2 % by Rank-9. Slow_4x16,; y performs similarly, while
Slow_8x8,; n converges faster after Rank-7. GaitGL_G shows slightly
weaker early-rank performance than the HAR models (29.4 % Rank-1)
but steadily closes the gap at higher ranks. AlignedRelID falls behind
again, showing low early-rank accuracy (17.6% Rank-1) and slower
convergence toward 100.0 %.

These results demonstrate that incorporating HAR features usually
boosts early-rank retrieval performance while contributing to more sta-
ble performance across higher ranks. The performance gap between
GaitGL_G and HAR-fused models is more pronounced in the cross-year
setting than in the same-year evaluation, reinforcing the robustness and
long-term Re-ID capacity of HAR-enhanced architectures.

Fig. 4 illustrates the most challenging cross-year evaluation setting:
RP1_20 < RP3_23. Despite the increased difficulty caused by the three-
year gap and different locations, HAR-enhanced models outperform the
gait-only and appearance-based baselines.

In the RP1 20 — RP3_23 scenario, X3D_L achieves the strongest
early-rank performance, with 47.1% at Rank-1 and 76.5% by Rank-
3. Slow_8x8y;y quickly catches up at Rank-3 (82.4%) and holds
steady through Rank-9 before converging to 100.0% at Rank-15.
Slow_4x16,; 5 demonstrates slightly weaker early-rank accuracy but
converges similarly by Rank-15. GaitGL_G, while showing relatively
solid performance (35.3% Rank-1), trails behind the HAR models at
most ranks and only aligns with them around Rank-13. AlignedRelD re-
mains the least effective, with just 17.6 % at Rank-1 and only reaching
70.6 % by Rank-13.

In the reverse direction, RP3_23 — RP1_20, the overall trend persists.
X3D_L leads with 52.9 % Rank-1, outperforming all others across early
ranks. Slow_8x8,;y and Slow 4x16,;, also deliver competitive re-
sults, achieving 70.6 % and 52.9 % Rank-1, respectively. GaitGL_G main-
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Fig. 4. CMC curves for the long-term evaluation between RP1_20 and RP3_23, comparing HAR-enhanced models. GaitGL_G is shown in black dotted, and AlignedReID
(baseline) in red dotted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

tains a solid but slightly lower trajectory, starting at 35.3 % Rank-1 and
only catching up from Rank-9 onward. AlignedRelID again lags across
early and mid ranks, only surpassing 50 % accuracy after Rank-9.
Comparing these results with both the RP1_20 < RP2 23 evalua-
tion and the same-year setting, the improvements introduced by HAR
are more substantial in these highly unconstrained, long-term scenar-
ios. HAR-enhanced models offer better Rank-1 and Rank-5 performance
and show faster convergence in the CMC curves. Among them, X3D_L
emerges as the most consistent across all settings, confirming its robust-
ness in both short-term and long-term Re-ID. These findings reinforce
the value of combining gait and action-level information, mainly when
dealing with significant spatio-temporal gaps and real-world variability.

8. Short-term Re-ID experiments

As expected, the short-term Re-ID experiment performs better than
the long-term results discussed in the previous section. Evaluating the
model across different locations on the same day provides a more favor-
able setting with less variation in appearance, environment, and record-
ing conditions.

8.1. Gait analysis

Table 6 presents the results for the short-term Re-ID scenario, where
the objective is to re-identify individuals across different locations

Table 6

Short-term Re-ID using only gait features. Performance on same-year cross-
location evaluations (probe — gallery). Metrics reported as mAP / Rank-1 /
Rank-5. Baseline performances are shown in gray, and the best-performing
backbone is highlighted in blue.

Gait Backbone RP2 23 — RP3_23 RP3_23 — RP2.23

mAPt R1t R51 mAP?T R11 R51
MobileNet V2 [33] 325% 17.7% 47.1% 21.6% 59% 29.4%
DenseNet 121 [32] 20.0% 5.9% 23.5% 252% 11.8% 47.1%
OSNet [31] 30.8% 11.8% 64.7% 21.6% 59% 29.4%
AlignedRelD [34] 84.4% 765% 941% 73.0% 70.6% 82.4%
GaitBase_C [27] 423% 23.5% 64.7% 446% 294% 76.5%
GaitBase_O [27] 57.7% 353% 765% 655% 47.1% 88.2%
GLNp1_C [26] 55.2% 41.2% 70.6% 46.8% 23.5% 82.4%
GLNp2_C [26] 56.1% 353% 76.5% 57.8% 29.4% 88.2%
GaitGL_C [25] 59.2% 47.1% 82.4% 63.2% 47.1% 82.4%
GaitGL_G [25] 73.6% 64.7% 941% 847% 76.5% 100.0%
GaitGL_O [25] 49.8% 353% 70.6% 588% 41.2% 70.6%
GaitPart_C [11] 383% 235% 529% 399% 235% 529%
GaitPart G [11] 60.5% 47.1% 76.5% 76.0% 64.7% 94.1%
GaitPart O [11] 499% 353% 76.5% 55.8% 353% 88.2%
GaitSet_C [10] 58.7% 47.1% 82.4% 56.9% 41.2% 76.5%
GaitSet_G [10] 50.8% 29.4% 76.5% 56.4% 41.2% 70.6%
GaitSet_O [10] 51.9% 353% 64.7% 51.6% 353% 70.6%

within the same day. The metrics reported are mAP, Rank-1, and Rank-
5 accuracy. Baseline models based on appearance cues (e.g., MobileNet
V2, DenseNet, OSNet, and AlignedReID) are shown in gray. Among
these, AlignedRelD stands out with strong performance, indicating the
strength of appearance features when clothing and context remain rela-
tively consistent. However, when evaluating gait-based models, several
backbones outperform these baselines, especially those trained on more
extensive or diverse datasets. GaitGL_G, trained on the GREW dataset,
achieves the highest overall performance, with an mAP of 84.7 % and a
perfect Rank-5 score in the RP3_23 — RP2_23 direction. This suggests
that training on unconstrained, real-world data provides a significant ad-
vantage for cross-location generalization. Other high-performing back-
bones include GaitPart_G and GaitBase_O, further reinforcing the impor-
tance of architecture choice and pre-training data.

Comparing Tables 2, 3 and 6, all models show a noticeable drop in
performance under long-term Re-ID (Tables 2 and 3), particularly the
appearance-based baselines. For example, AlignedReID, which reached
84.4% mAP and 76.5 % Rank-1 in the short-term setting, drops below
30% mAP and 20% Rank-1 across most long-term evaluations. This
stark contrast demonstrates the limitations of appearance cues in long-
term Re-ID tasks. Gait-based methods, while also affected, maintain rela-
tively stable performance over time. Notably, GaitGL_G is the only back-
bone to consistently perform well in both short-term and long-term set-
tings, achieving 73.6 % / 64.7 % / 94.1 % in the short-term scenario and
up to 54.7% / 35.3% / 82.4% in the long-term scenario.

8.2. HAR integration

Table 7 presents the results of the short-term Re-ID experiments
when HAR features are integrated into the pipeline through the cross-
attention mechanism described in Section 3. In this configuration, the
fused embeddings f; discriminate between identities (please refer to
Fig. 1). The gait-based model GaitGL_G is used as the backbone and
is highlighted in blue, while each HAR model is tested in combination
with this backbone. The results demonstrate that incorporating HAR sig-
nificantly enhances Re-ID performance compared to using gait alone.

For example, GaitGL_G by itself achieves 73.6 % mAP and 64.7 %
Rank-1 in the RP2 23 — RP3_23 direction, and an impressive 84.7 %
mAP and 76.5% Rank-1 in the reverse direction. When HAR is added,
many models exceed or match these results. Notably, the best overall
performance is achieved by SL_4x16,, which obtains 85.2% mAP
and 76.5 % Rank-1 in the RP2_23 — RP3_23 case, and ties with GaitGL_G
at 84.7 % mAP and 76.5 % Rank-1 in reverse. Other top-performing HAR
models include X3D_XS (84.3% / 76.5%) and X3D_L (81.0% / 70.6 %)
in the forward direction, all of which outperform the gait-only baseline.

Even lightweight HAR models such as X3D_S and C2D yield notable
improvements, suggesting that HAR features consistently provide com-
plementary motion and activity-level cues that enhance identity dis-
crimination. Overall, these findings validate the effectiveness of the
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Table 7

Short-term Re-ID results fusing gait and HAR. Performance evaluation results
for same-year, cross-location Re-ID (probe — gallery). Performance is reported
using mAP, Rank-1, and Rank-5 metrics. Baseline appearance-based methods
are shown in gray, the gait-based backbone under consideration is shown in
blue, and the best-performing HAR model is highlighted in green.

HAR Backbone RP2_23 — RP3.23 RP3_.23 — RP2 23
mAP? R1t R51 mAP? R1t R51

MobileNet V2 [33] 325% 17.7% 47.1% 21.6% 59% 29.4%
DenseNet 121 [32] 20.0% 5.9% 23.5% 25.2% 11.8% 47.1%
OSNet [31] 30.8% 11.8% 64.7% 21.6% 59% 29.4%
AlignedRelD [34] 84.4% 76.5% 94.1% 73.0% 64.7% 82.4%
GaitGL_G [25] 73.6% 64.7% 941% 847% 76.5% 100.0%
C2D [21] 779% 64.7% 941% 79.9% 64.7%  100.0%
I3D [22] 80.4% 70.6% 94.1% 75.7%  58.8%  100.0%
I3Dy ;v [29] 76.7% 647% 100.0% 81.9% 70.6% 94.1%
SL_4x16 [28] 77.0% 64.7% 94.1% 77.5% 64.7%  100.0%
SL_4x16,, v [29] 85.2% 76.5% 94.1% 847% 76.5% 100.0%
SL_8x8 [28] 83.6% 76.5% 94.1% 80.4% 64.7% 100.0%
SL_8x8y;y [29] 80.6% 70.6% 94.1% 80.4% 64.7%  100.0%
SLF_4x16 [23] 71.1% 588% 88.2% 847% 76.5% 100.0%
SLF 4x16y, 5 [29] 71.3% 58.8% 94.1% 81.6% 70.6%  100.0%
SLF_8x8 [23] 78.6% 64.7% 100.0% 824% 70.6% 100.0%
SLF_8x8,; n [29] 76.7% 64.7% 941% 77.5% 58.8%  100.0%
X3D, [24] 81.0% 70.6% 94.1% 81.9% 70.6% 100.0%
X3D,, [24] 65.1% 47.1% 94.1% 77.0%  58.8%  100.0%
X3Dg [24] 80.0% 70.6% 94.1% 81.4% 70.6% 100.0%
X3Dy g [24] 843% 76.5% 941% 81.9% 70.6% 94.1%

cross-attention fusion strategy and demonstrate that augmenting gait
with HAR improves robustness in short-term Re-ID tasks.

When comparing these results to those in Tables 4 and 5 (long-
term Re-ID with HAR), we observe that performance also drops across
the board in the long-term setting, which is expected due to the
three-year gap and environmental differences between the record-
ings. For example, the best mAP in the short-term scenario reaches
85.2% (SL_4x16,,5), while in the most challenging temporal case
(RP1_20 — RP3_23), the best mAP is 63.8 % (X3D_L). However, the rel-
ative improvements introduced by HAR remain consistent in both sce-
narios, validating the generalization capacity of fused motion/activity-
based representations. Moreover, HAR-enhanced models consistently
outperform the GaitGL_G baseline (in blue) in all short-term and long-
term cases, establishing HAR integration-especially with two models
such as X3D_L and SLF_8x8; 5, demonstrating an effective and resilient
solution for long-term person Re-ID in real-world settings.

The CMC curves for the short-term Re-ID cover two settings:
RP2_23 « RP3_23. By highlighting the probability of correctly iden-
tifying the target at various ranks, these visualizations provide deeper
insight into where HAR contributes most through early rank improve-

ments (e.g., Rank-1 and Rank-5) or enhanced overall retrieval consis-
tency.

Fig. 5 presents the CMC curves for the short-term Re-ID evaluations.
Across both directions, integrating HAR features leads to consistent per-
formance gains over the gait-only and appearance-only baselines.

In the RP2_23 — RP3_23 direction, Slow_4x16, ;5 (SL_4x165;,n)
achieves the best early-rank performance with 76.5% Rank-1 and
88.2% Rank-2 accuracy, converging to 100.0% by Rank-7. X3D_L
and Slow_8x8,,y (SL_8x8, ;) show very competitive results, reach-
ing 70.6% Rank-1 and also converging to 100.0% by Rank-9. No-
tably, GaitGL_G lags slightly behind at early ranks (64.7% Rank-1,
70.6 % Rank-2) but rapidly improves after Rank-4. AlignedReID shows
strong Rank-1 performance (76.5 %) but flattens slightly before reaching
100.0 %, indicating weaker retrieval consistency at higher ranks com-
pared to HAR-enhanced models.

In the reverse direction (RP3_23 — RP2_23), the trend continues
with all HAR-enhanced models surpassing both baselines. Slow_8x8y; n
achieves the fastest convergence, reaching 100.0 % by Rank-3. X3D_L
and Slow_4x16,; 5 follow closely, also achieving 100.0 % by Rank-4.
While GaitGL_G maintains a strong baseline (76.5% Rank-1), it con-
verges more slowly than the HAR-fused models. AlignedRelD again per-
forms the weakest at early and mid ranks, achieving only 64.7 % Rank-1
and not reaching 100.0 % until Rank-13.

These results confirm that HAR integration improves early retrieval
accuracy and convergence speed in short-term Re-ID tasks. Among the
HAR-enhanced models, Slow_4x16; y, X3D_L, and Slow_8x8,; y con-
sistently outperform the gait-only and appearance-only baselines, rein-
forcing the value of motion-aware representations in realistic, location-
varying settings.

9. Ablation study on fusion strategies

To further analyze the role of the fusion mechanism in our frame-
work, we provide an ablation study using the best-performing gait back-
bone (GaitGL trained on GREW) and the best-performing HAR back-
bone (X3D-L) identified in our previous experiments. We evaluate three
alternative fusion strategies: cross-attention, cosine similarity-based fu-
sion, and concatenation. Each represents a distinct way of integrating
gait and HAR embeddings. Cross-attention adaptively emphasizes be-
havioral cues conditioned on gait, while cosine similarity enforces align-
ment by maximizing directional closeness between modalities. In con-
trast, concatenation stacks the embeddings without explicit interaction,
serving as a baseline.

All variants were trained following the same protocol described
in Section 3, using triplet loss with semi-hard negative mining and
the modality-aware distance formulation to balance the contribution
of gait and HAR streams. By fixing the underlying encoders to their
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strongest configurations, this ablation isolates the impact of the fu-
sion strategy itself. The comparative results quantify the impact of each
method on retrieval performance in both short-term and long-term set-
tings, highlighting the advantages of attention-based fusion over simpler
alternatives.

In the long-term RelD evaluation, cross-attention consistently out-
performed the other fusion strategies across all transfer scenarios.
For RP2_23—RP1_20 and the reverse direction (Fig. 6), cross-attention
achieved higher mAP values (51.4% and 55.2%, respectively) com-
pared to concat (44.8% and 41.6 %) and cosine (31.9% and 31.7 %).
Similar improvements were observed in transfers involving RP3_23
(Fig. 7), where the cross-attention fusion reached 63.8% mAP for
RP1_20—RP3_23 and 65.7% for RP3_23—RP1_20, clearly surpassing
concat (45.3 % and 53.4 %) and cosine (33.9 % and 46.8 %). In all cases,
cross-attention also outperformed the baselines GaitGL_G and Aligne-
dRelD, demonstrating superior generalization capability in long-term
cross-environment RelD.

10. Conclusion

In this work, we propose a two-stream architecture for person Re-ID
that jointly models gait and HAR features. Our framework leverages ex-
isting components (BiLSTMs, pre-trained HAR extractors, attention) but
is original in how they are integrated and adapted to the long-term Re-
ID challenge. The model learns discriminative embeddings by treating
gait as the primary identity signal and enriching it with activity cues
through cross-attention, thereby improving both short-term and long-
term performance.

We also introduce a real-world long-term Re-ID dataset from two
editions (2020, 2023) of an ultra-distance sporting event. It captures
natural variations across years and locations, enabling realistic longitu-
dinal evaluation.

10

Our fused gait-HAR model outperformed appearance-based and gait-
only baselines, with +12% mAP in long-term and +11.6% in short-
term setups. HAR-enhanced models also improved early-rank retrieval,
confirming the value of multimodal fusion in unconstrained conditions.
Limitations include reliance on reliable silhouettes and a HAR branch
based on pre-trained backbones. The test set comprises 17 identities and
51 videos, resulting in 1734 comparisons under a subject-disjoint pro-
tocol, which ensures a meaningful and comprehensive assessment.

This two-stream paradigm opens avenues for broader multimodal
identity modeling. Future work may expand datasets to more diverse
contexts, validating generalization. Overall, we present a robust frame-
work that bridges motion understanding and identity recognition in real-
world Re-ID.
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