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 a b s t r a c t

We propose a two-stream person re-identification (Re-ID) framework that integrates gait and human action recog-
nition (HAR) through cross-attention fusion. The model processes gait sequences via a BiLSTM-based encoder to 
capture temporal motion dynamics. At the same time, HAR embeddings are extracted using pre-trained video 
backbones and distilled into compact behavioral features. These two modalities are fused using a cross-attention 
mechanism, enriching gait-based identity representations with context-aware activity cues. We evaluate our 
method on a newly curated long-term spatio-temporal dataset of ultra-distance runners captured in natural out-
door settings across multiple locations spanning three years (2020 to 2023). Experimental results demonstrate 
that integrating HAR significantly enhances gait-based Re-ID performance. Compared to gait-only models, our ap-
proach yields a 12% improvement in mean Average Precision (mAP) in cross-year scenarios and up to an 11.6% 
gain in same-year evaluations. The HAR-enhanced models also exhibit faster convergence and higher Rank-1 
accuracy, establishing the effectiveness of multi-modal motion-based representations for long-term, real-world 
person Re-ID.

1.  Introduction

Humans can recognize familiar individuals across diverse contexts 
and times. Biometrics automates this process using physical, chemical, 
or behavioral traits [1]. Typically, biometric verification systems as-
sume a known gallery of identities created during registration. In con-
trast, when identities are not pre-registered, the task shifts to linking 
observations of the same individual across time and space, regardless 
of their true name. This problem, known as person re-identification 
(Re-ID), involves retrieving an individual across different cameras or 
time spans [2]. In this work, we focus on supervised Re-ID, where la-
beled identities guide the learning of embeddings. Most research em-
phasizes short-term image-based Re-ID, where appearance remains sta-
ble. Real deployments, however, require long-term Re-ID, where cloth-
ing and visual cues change over time. Video provides richer temporal 
information, with gait serving as a stable biometric foundation. Nev-
ertheless, benchmarks for long-term, video-based Re-ID remain scarce. 
DeepChange [3] is among the few, though its imbalance in identity fre-
quency poses challenges, and its use in video-based scenarios is limited. 
Long-term Re-ID in crowded, dynamic environments is particularly dif-
ficult: individuals may look alike, appear briefly, or undergo occlusions, 
motion blur, and domain shifts. Appearance-based cues often fail under 
such conditions. Motion signals such as gait, together with human ac-
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tion recognition (HAR), offer complementary stability and behavioral 
context. Despite this, they are rarely combined in trainable, end-to-end
systems.

Our main contributions are as follows. First, we propose a two-
stream architecture that combines gait and HAR features for person Re-
ID. A gait dynamics is learned in a structured way by a BiLSTM branch, 
and a light-weight and well-cited baseline in video recognition is ob-
tained by the HAR branch, producing compact clip-level embeddings by 
global-temporal average pooling, in order to keep the auxiliary branch 
light-weight. Then, we incorporate a cross-attention scheme enabling in-
teractive mixing of the two feature streams, allowing for a flexible com-
bination of activity and motion cues. We utilized a triplet loss function 
to uncover discriminative and generalizable representations. Second, we 
introduce a new dataset collected in unconstrained environments, where 
ultra-distance race participants were recorded at two locations in 2020 
and at two additional locations in 2023. This design facilitates evalua-
tion under both short-term conditions (same-day/within-year) and long-
term conditions (across multiple years), thereby capturing realistic vari-
ations in appearance, viewpoint, and environment.

Experiments show that fusing gait and HAR outperforms single-
stream and visual-only baselines, yielding more robust embeddings. Re-
sults highlight the potential of motion-based multimodal representations 
for Re-ID in unconstrained conditions.
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Fig. 1. Pipeline of the proposed two-stream architecture. Gait and HAR features are extracted independently, aligned in dimension, and fused via a cross-attention 
mechanism where gait attends to HAR. The fused embedding is used for identity representation. This design prioritizes gait as the primary cue while enriching it 
with complementary HAR context.

2.  Related work

Person Re-ID has traditionally focused on visual appearance cues 
such as color, clothing, and facial features. However, in real-world long-
term scenarios involving large-scale outdoor events or cross-year com-
parisons, appearance cues often fall short due to lighting variations, 
occlusions, and clothing changes [4]. To address these challenges, re-
searchers have explored motion-based modalities such as gait as com-
plementary or alternative identity signals [5]. Our work builds on this 
line of research by jointly modeling gait and HAR in a unified architec-
ture for spatio-temporal Re-ID [6].

Re-ID in time and space. Spatio-temporal Re-ID aims to recog-
nize individuals across significant temporal and spatial gaps, where 
appearance-based models are particularly vulnerable to domain shift 
and context changes [7]. Existing methods often address these issues by 
incorporating temporal modeling [8] or leveraging soft biometrics such 
as gait [9]. In this regard, gait is especially promising in long-term Re-
ID due to its inherent stability and robustness against changes in cloth-
ing and viewpoint. However, many current models still struggle when 
faced with unconstrained real-world variability, such as that found in 
long-term datasets.

Appearance-based gait recognition. Gait recognition methods can 
be broadly categorized into skeleton-based and appearance-based ap-
proaches [9]. Our work considers 2D silhouettes used to extract dis-
criminative motion patterns. More recent deep learning-based models, 
such as GaitSet [10], use set-based learning to handle unaligned input 
frames. GaitPart [11] introduces part-based modeling to capture local 
motion features better. These approaches have demonstrated strong per-
formance under controlled conditions but often lack robustness in dy-
namic, real-world environments.

HAR and multi-modal cues. HAR provides a higher-level under-
standing of behavior that can complement gait in identity reason-
ing. Although HAR has been widely studied for activity classification 
tasks [12], its use in person Re-ID remains limited. Recently, pre-trained 
HAR models for person Re-ID in ultra-distance sports scenarios have 
been explored, emphasizing the impact of fatigue-induced movement 
changes on recognition performance [13]. However, their approach 
does not explicitly incorporate gait analysis. We aim to bridge this gap 
by jointly embedding HAR and gait cues, enabling richer, context-aware 
representations for spatio-temporal Re-ID.

Datasets. Several benchmark datasets support gait-based person 
Re-ID research. CASIA-B [14] remains one of the most widely used 
datasets, featuring gait sequences from 124 subjects under varying view-
points and conditions (e.g., normal, bag-carrying, and coat-wearing). 
The OU-ISIR gait datasets, including the large-scale OU-MVLP [15], pro-
vide extensive samples across different age groups, clothing variations, 
and viewpoints. OU-MVLP, in particular, includes over 10,000 subjects 
captured from 14 view angles, making it one of the most extensive 
multi-view gait datasets available. GREW [16] is a recent large-scale 
dataset collected from real-world surveillance footage containing over 

26,000 subjects in unconstrained environments. Other datasets, such 
as FVG [17], contribute to advancing cross-view and in-the-wild gait 
recognition by offering high-quality visual gait data under naturalistic 
conditions.

However, these datasets typically lack long-term variability, as they 
do not include recordings of the same individuals across multiple years. 
In contrast, one of our key contributions is a new dataset comprising 
real-world race footage recorded over three years (2020 and 2023) and 
from different distant locations within the same year. This enables the 
evaluation of gait-based Re-ID under realistic conditions of appearance 
change, long-term temporal gaps, and spatial variability, a scenario not 
addressed in existing benchmarks.

3.  Methodology

This section describes the proposed two-stream architecture for 
spatio-temporal person Re-ID (see Fig. 1), which integrates gait and hu-
man action information through pre-trained backbones. We first formal-
ize the problem, then detail the structure and roles of the gait and HAR 
backbones, the fusion strategy based on cross-attention, and finally, the 
training objective using triplet loss with semi-hard negative sampling.

3.1.  Problem formulation

Let  = {(𝑣𝑖, 𝑦𝑖)}𝑁𝑖=1 be a dataset of 𝑁 raw video recordings, where:

• 𝑣𝑖 denotes the 𝑖th input video captured at a particular time and lo-
cation,

• 𝑦𝑖 ∈ {1,… , 𝐶} is the identity label associated with 𝑣𝑖.

Each video 𝑣𝑖 is processed through two modality-specific pipelines 
to extract temporal embeddings for gait and HAR.

Gait Processing Pipeline.  The gait modality aims to model the sub-
tle motion patterns unique to each individual. To extract these cues, the 
raw video 𝑣𝑖 is first processed into a sequence of binary silhouettes by 
combining person detection and pose estimation. Specifically, we use 
YOLOv8 [18] and Bot-SORT [19] for robust multi-object tracking, en-
abling consistent localization of the subject across frames. Silhouettes 
are later generated using SAMURAI [20]. The resulting silhouette se-
quence serves as input to a pre-trained gait encoder GAIT, which has 
been trained on large-scale public datasets such as CASIA-B, OUMVLP, 
and GREW.

The encoder produces a feature tensor from the silhouette sequence:
𝐸GAIT
𝑖 = GAIT(𝑣silhouettes𝑖 ) ∈ ℝ𝐷𝑔×𝑃

Where 𝐷𝑔 is the feature dimension and 𝑃  represents the number of hor-
izontal partitions of the body used during Horizontal Pyramid Pooling 
(HPP). This output captures part-level information rather than tempo-
ral dynamics; each row corresponds to a distinct horizontal region of 
the body (e.g., upper torso, lower legs), not a time step.
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To ensure stability, each part embedding vector is first standardized:

𝐸̃𝑖[∶, 𝑝] =
𝐸GAIT
𝑖 [∶, 𝑝] − 𝜇train

𝜎train

and then L2-normalized:

𝐸̂𝑖[∶, 𝑝] =
𝐸̃𝑖[∶, 𝑝]

‖𝐸̃𝑖[∶, 𝑝]‖2

This results in a sequence of normalized part-based embeddings 
𝐸̂GAIT
𝑖 ∈ ℝ𝐷𝑔×𝑃 . Although they form a sequence-like structure, the or-

der of parts corresponds to spatial locations rather than chronological 
time.

Part-wise Encoding. To capture the structured spatial information en-
coded in the body parts, the normalized part descriptors 𝐸̂GAIT

𝑖  are inter-
preted as a sequence and passed through a BiLSTM. While this sequence 
does not represent time, the recurrent architecture allows for context 
modeling across adjacent body regions. This allows the model to cap-
ture structured co-movement patterns (e.g., torso-leg coordination) that 
are informative for identity. We use a bidirectional LSTM to aggregate 
such spatial dependencies. Let 𝐸̃𝑖 = (𝐸̂GAIT

𝑖 )⊤ ∈ ℝ𝑃×𝐷𝑔 , where the part 
dimension 𝑃  is treated as the temporal axis.

ℎGAIT𝑖 = 𝜙
(

BiLSTM256
(

Dropout
(

BiLSTM128(𝐸̃𝑖)
)))

Here, 𝜙 denotes a dense layer with ReLU activation. This config-
uration models spatial body part embeddings as a pseudo-temporal se-
quence, allowing the BiLSTM to capture part-to-part relational dynamics 
relevant to identity.

HAR Processing Pipeline. The HAR stream is designed to capture 
high-level activity patterns from the subject’s movement. However, raw 
videos may contain multiple actors, visual clutter, or background dis-
tractions To ensure that the extracted embeddings focus solely on the 
subject of interest, we apply a context-constrained preprocessing step.

Step 1: Video Preprocessing - Context Constraint. We use the silhouettes 
previously computed to crop a tight region around the individual in each 
frame. The rest of the frame is suppressed by superimposing the silhou-
ette onto a static mode frame 𝑓 . For an individual 𝑖 at time 𝑡 ∈ [0, 𝑇 ], let 
𝑆𝑖𝑙(𝑖)(𝑡) be the silhouette, and 𝐹 (𝑖)(𝑡) the raw frame. The preprocessed 
frame is defined as:
𝐹 ′(𝑖)(𝑡) = Crop(𝐹 (𝑖)(𝑡), 𝑆𝑖𝑙(𝑖)(𝑡)) +

(

1 − 1𝑆𝑖𝑙(𝑖)(𝑡)
)

⋅ 𝑓

This produces a context-constrained video 𝑣context𝑖 = {𝐹 ′(𝑖)(𝑡)}𝑇𝑡=0 fo-
cused solely on the individual.

Step 2: HAR Feature Extraction. The processed video 𝑣context𝑖  is then 
passed through a pre-trained action recognition backbone HAR, which 
outputs a sequence of temporal embeddings:
𝐸HAR
𝑖 = HAR(𝑣context𝑖 ) ∈ ℝ𝑇 ′×𝐷ℎ

where 𝑇 ′ is the number of temporal segments or frames output by the 
HAR backbone and 𝐷ℎ is the dimensionality of each HAR embedding 
vector.

After extracting the sequence of embeddings from the HAR back-
bone, we apply normalization frame-wise before pooling. First, the em-
beddings are standardized using the mean and standard deviation com-
puted across the training set, and then, each frame is L2-normalized:

𝐸̃HAR
𝑖 =

𝐸HAR
𝑖 − 𝜇HARtrain

𝜎HARtrain

, 𝐸̂HAR
𝑖 =

𝐸̃HAR
𝑖

‖𝐸̃HAR
𝑖 ‖2

Although temporal modeling techniques, such as those used in gait 
recognition, aim to capture patterns, we observed that naive temporal 
processing alone did not yield significant improvements in Re-ID perfor-
mance. Then, average pooling is applied over the temporal dimension 
to aggregate frame-level features into a sequence-level representation:
ℎ̄HAR𝑖 = AvgPool(𝐸̂HAR

𝑖 ) ∈ ℝ𝐷ℎ

Since the output dimensions of the gait and HAR streams may differ 
(𝐷𝑔 ≠ 𝐷ℎ), we apply a projection layer to transform the HAR represen-
tation into the common dimension 𝐷:
ℎHAR𝑖 = 𝜙proj(ℎ̄HAR𝑖 ) ∈ ℝ𝐷

Both ℎGAIT𝑖 ∈ ℝ𝐷 and ℎHAR𝑖 ∈ ℝ𝐷 are projected into a shared embed-
ding space of dimension 𝐷, where 𝐷 denotes the common projection 
size (i.e., 𝐷𝑔 = 𝐷), ensuring compatibility for subsequent fusion. The 
resulting pair of embeddings (ℎGAIT𝑖 , ℎHAR𝑖 ) are aligned in dimension and 
subsequently used for cross-attention-based fusion and identity embed-
ding computation.

Rationale for temporal aggregation. In the HAR stream, we use global 
temporal average pooling in order to obtain clip-level embeddings. This 
keeps the HAR stream lightweight, computationally robust, and easy to 
train in parallel with the combining module, aligning with typical prac-
tice in recent video recognition backbones (e.g., C2D [21], I3D [22], 
SlowFast [23], X3D [24]). Shallow recurrent layers and temporal 1D 
convolutions in our experiments did not show consistent improvement 
under long-term Re-ID, while average pooling kept accuracy with a mod-
est cost. Even though more intricate aggregation methods are potentially 
available (e.g., self-attention, Transformer pooling), we intentionally se-
lect simplicity and robustness in order to uncover the isolated contribu-
tion of HAR cues towards gait-based recognition.

3.2.  Cross-attention fusion

We apply a cross-attention mechanism to fuse both modalities, where 
the gait embedding attends to the HAR representation. Given the aligned 
embeddings (ℎGAIT𝑖 , ℎHAR𝑖 ) for sample 𝑖, we define:
𝑄𝑖 = ℎGAIT𝑖 ∈ ℝ1×𝐷

𝐾𝑖 = 𝑉𝑖 = ℎHAR𝑖 ∈ ℝ1×𝐷

The attention weights and attended HAR embedding are computed 
as:

𝛼𝑖 = softmax

(

𝑄𝑖𝐾⊤
𝑖

√

𝐷

)

, 𝑧𝑖 = 𝛼𝑖 ⋅ 𝑉𝑖

We then concatenate the original gait embedding with the attended 
HAR vector and apply a projection layer 𝜙 to obtain the final fused 
identity representation:
𝑓𝑖 = 𝜙proj

(

[ℎGAIT𝑖 ; 𝑧𝑖]
)

∈ ℝ𝐷

where [ ; ] denotes concatenation and 𝜙proj is a dense projection layer.
In this setup, gait is defined as the querying modality (serving as 

the Query in the attention mechanism) because the primary objective 
of the framework is identity recognition rather than activity categoriza-
tion. Gait embeddings are explicitly trained to discriminate identities 
and thus form the base representation to be preserved. HAR features, in 
turn, provide the Keys and Values, offering complementary contextual 
cues that enrich the gait signal without shifting the focus toward action 
recognition. Through the attention mechanism, the model selectively 
integrates relevant HAR information into the gait embedding. The re-
sulting attended representation is then combined with the original gait 
embedding, ensuring that gait remains the dominant identity signal. Fi-
nally, a projection layer fuses both sources into a unified identity repre-
sentation in a common embedding space, where samples can be directly 
compared using L2 distance for Re-ID.

3.3.  Triplet loss for metric learning

To teach the model how to tell different people apart, we use a triplet 
loss function. It compares three examples at a time:

• an anchor (𝑎), a reference video of a person,
• a positive sample (𝑝), another video of the same person,
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• a negative sample (𝑛), a video of a different person.

The goal is to make sure that the model places the anchor closer to 
the positive than to the negative in the embedding space, with some 
extra margin 𝛼 for safety. The loss is defined as:

triplet =
𝑁
∑

𝑗=1
max

(

‖𝑓 (𝑎𝑗 ) − 𝑓 (𝑝𝑗 )‖22 − ‖𝑓 (𝑎𝑗 ) − 𝑓 (𝑛𝑗 )‖22 + 𝛼, 0
)

Here:

• 𝑓 (⋅) is the embedding function (i.e., the model’s output for each in-
put),

•
‖ ⋅ ‖2 is the L2 distance between embeddings,

• 𝛼 is a fixed margin (e.g., 0.5),
• The max(⋅, 0) makes sure we only penalize the model when the neg-
ative is too close to the anchor.

If the model already separates the anchor and negative correctly, we 
don’t penalize it. If it doesn’t, the loss becomes positive and the model 
learns from that mistake.

To construct effective triplets, we apply semi-hard negative mining, 
selecting negatives that satisfy:
‖𝑓 (𝑎) − 𝑓 (𝑝)‖22 < ‖𝑓 (𝑎) − 𝑓 (𝑛)‖22 < ‖𝑓 (𝑎) − 𝑓 (𝑝)‖22 + 𝛼

We define a modality-aware distance used both in the loss function 
and during negative sample selection:
𝑑combined(𝑥, 𝑦) = 𝜆 ⋅ ‖ℎGAIT𝑥 − ℎGAIT𝑦 ‖2 + (1 − 𝜆) ⋅ ‖ℎHAR𝑥 − ℎHAR𝑦 ‖2

This combined distance selects negative samples across identities and 
checkpoints during mining, with 𝜆 = 0.5 balancing the contribution of 
gait and HAR modalities equally.

4.  Dataset

Our study is based on a dataset collected at four different loca-
tions during the 2020 and 2023 editions of the Transgrancanaria ultra-
distance running competition. In this event, athletes compete on a 128-
kilometer course that typically takes between 12 and 30 h to complete. 
Each sample in the dataset consists of a short video clip, typically last-
ing no more than ten s, recorded at 25 frames per second. The dataset 
does not exhibit a symmetric structure in which each runner is recorded 
at every location. Instead, most runners appear in two locations, while 
a subset of fifteen runners appear in three within the training set and 
seventeen in three within the test set. As a result, location pairs differ 
in how much they share subjects. Some pairs involve identical sets of 
runners, while others involve partially overlapping or entirely distinct 
subsets. This necessitates a pair-level analysis when interpreting train-
ing and test splits, as seen in Table 1.

The training set of the dataset comprises a total of 423 labeled videos, 
each corresponding to a unique observation of a runner at a specific 
Recording Point (RP), identified by a location-year code (RPloc_year). 
These observations are distributed across four distinct points in differ-
ent years: RP0_20, RP1_20, RP2_23, and RP3_23. Runners are most of-
ten recorded in exactly two of these locations, forming 234 unique un-
ordered pairs, which serve as the fundamental unit of co-occurrence 
in the analysis. The pair RP0_20 ↔ RP1_20 emerges as the most fre-
quent, appearing in 158 instances, indicating a strong connection be-
tween these two 2020 locations. Similarly, the 2023 pair RP2_23 ↔
RP3_23 appears 39 times, reflecting a notable but less dominant co-
location pattern.

The training dataset includes 15 runners who appear in three dis-
tinct locations. Each of these runners contributes three unique location 
pairs, increasing the number of co-occurrence pairs without a propor-
tional increase in video samples, as explained in Table 1. Their presence 
adds structural complexity to the network of relationships by connect-
ing more location pairs per individual rather than inflating the dataset 
size.

Table 1 
Number of runners and videos per location pair in 
the training and test sets. The training set contains 
204 runners: 189 observed in two different locations 
and 15 observed in three, resulting in a total of 423 
labeled videos. Because some runners contribute to 
multiple location pairs, the sum of runner and video 
counts across pairs exceeds the total number of unique 
training videos. The test set comprises 17 runners ob-
served in three different locations, resulting in 51 la-
beled videos.
 Set  Location Pair  # Runners  # Videos
 Train  RP0_20 ↔ RP1_20  158  316
 Train  RP2_23 ↔ RP3_23  39  78
 Train  RP1_20 ↔ RP3_23  15  30
 Train  RP0_20 ↔ RP3_23  11  22
 Train  RP2_23 ↔ RP1_20  6  12
 Train  RP0_20 ↔ RP2_23  5  10
 Test  RP1_20 ↔ RP2_23  17  34
 Test  RP1_20 ↔ RP3_23  17  34
 Test  RP2_23 ↔ RP3_23  17  34

Fig. 2. These dataset samples illustrate short-term and long-term Re-ID scenar-
ios. Each column corresponds to the same individual, while each row shows data 
captured at different locations and years. This figure has been anonymized for 
privacy purposes.

Moreover, the training dataset contains both same-year pairs, such 
as RP0_20 ↔ RP1_20 and RP2_23 ↔ RP3_23, and cross-year pairs, in-
cluding examples like RP0_20 ↔ RP3_23 and RP1_20 ↔ RP2_23. These 
temporal pairings provide insight into longitudinal movement patterns, 
highlighting transitions and tracking continuity across years (see Fig. 2). 
This structure offers a rich foundation for spatio-temporal analysis and 
deeper modeling of athlete behavior across time and locations.

The test partition contains 51 videos from 17 runners, each recorded 
in three locations: RP1_20, RP2_23, and RP3_23. Evaluation is per-
formed through pairwise comparisons between locations in both direc-
tions (e.g., RP1_20 to RP2_23 and RP2_23 to RP1_20), yielding six di-
rectional evaluation scenarios. For each direction, the 17 runners from 
the source location are matched against the 17 runners from the tar-
get location, producing 289 comparisons per direction. This results in a 
total of 1734 comparisons across the test set. The design ensures a com-
prehensive and balanced evaluation of generalization across spatial and 
temporal dimensions while maintaining a subject-disjoint protocol.
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5.  Gait & HAR backbones: From motion to identity

In this section, we provide a detailed description of the backbones 
used for gait and HAR, highlighting their architectural design and the 
type of information each captures. These modality-specific backbones 
form the foundation of our two-stream framework, with the gait back-
bone focusing on fine-grained motion dynamics and the HAR backbone 
capturing high-level activity patterns.

Gait Backbones. Silhouette-based gait recognition methods focus 
on extracting discriminative features from silhouette sequences to iden-
tify individuals based on their walking patterns. In our work, we em-
ploy several representative models-GaitBase, GLN Phase 1, GLN Phase 
2, GaitGL, GaitPart, and GaitSet-which share the common objective of 
leveraging silhouette information yet differ significantly in their archi-
tectural designs. GaitSet treats gait sequences as unordered frame sets, 
using temporal pooling to aggregate frame-level features without mod-
eling explicit spatial relationships. Building on this, GaitPart [11] incor-
porates part-based modeling using Focal Convolution (FConv) to extract 
local features across horizontal body regions, enhancing fine-grained 
spatial detail but potentially introducing sensitivity to alignment errors. 
GaitGL [25] refines this approach by combining global and local fea-
ture extraction branches with 3D convolutional layers to capture holistic 
and localized temporal-spatial dynamics. However, its added complex-
ity does not always yield consistent improvements in real-world scenar-
ios. GLN Phase 1 introduces a grouped latent representation strategy 
to disentangle feature learning, while GLN Phase 2 extends this with 
a refinement stage to progressively enhance feature granularity across 
network layers [26]. In contrast, GaitBase [27] adopts a deep residual 
network architecture to serve as a strong baseline backbone, demon-
strating the benefits of increased network capacity for capturing robust 
gait patterns.

As previously mentioned in Section 3, the models have been trained 
and evaluated on three benchmark datasets-OU-MVLP, CASIA-B, and 
GREW-which vary significantly in terms of scale, environmental condi-
tions, and overall complexity. OU-MVLP [15] is a large-scale constrained 
dataset collected in controlled indoor conditions with consistent camera 
viewpoints, offering extensive identity coverage but limited environ-
mental variation. Although smaller in scale, CASIA-B [14] introduces 
covariates such as clothing and carrying conditions in a multi-view in-
door setup, making it valuable for analyzing specific intra-subject vari-
ations. In contrast, GREW [16] is a real-world, in-the-wild dataset cap-
tured in unconstrained environments with diverse backgrounds, lighting 
conditions, and occlusions, reflecting practical deployment challenges 
and more related to the running scenario of our dataset. Due to these 
differences, not all models are trained across all datasets. Some archi-
tectures, particularly those relying on sensitive spatial modeling (e.g., 
GaitPart, GaitGL), may struggle to generalize on GREW without exten-
sive reconfiguration. Furthermore, training high-capacity models such 
as GLN Phase 2 or GaitBase on GREW can be computationally demand-
ing due to the dataset’s scale and complexity. Consequently, model train-
ing choices are influenced by dataset characteristics and the architec-
tural robustness and scalability of the gait backbones.

HAR Backbones. We employed a diverse set of backbone archi-
tectures with varying capacities to model spatial and temporal dy-
namics, including C2D, I3D, Slow8x8, Slow4x16, SlowFast8x8, Slow-
Fast4x16, and X3D variants (L, M, S, XS). The C2D model [21] em-
ploys 2D convolutions on individual frames, treating the video as a se-
quence of static images. While efficient, it lacks explicit temporal mod-
eling. I3D [22] overcomes this by inflating 2D filters to 3D and using 
two streams (RGB and optical flow) to capture appearance and motion 
jointly. SlowNet [28] processes fewer frames at high spatial resolution 
to model long-term patterns; we use Slow8x8 and Slow4x16 to vary 
temporal coverage.

SlowFast [23] adds a high-frame-rate path for fast motion, com-
plementing the slow path’s semantic focus. We evaluate SLF_8x8 and 
SLF_4x16. The X3D family [24] expands a 2D base model into spatiotem-

poral variants via progressive scaling. The four X3D versions differ in 
complexity and cost: XS applies multiple scaling stages, S reduces the 
frame rate, M increases spatial resolution, and L adds depth through 
deeper residual blocks. This structured design strikes a balance between 
efficiency and performance.

Several models (I3D, Slow, SlowFast) are enhanced with Non-local 
Networks (NLN) [29], which compute global pairwise dependencies 
across space and time. All backbones are pre-trained on Kinetics-
400 [30], enabling robust and transferable HAR performance across var-
ied conditions.

6.  Experimental setup

Baselines. As baseline models for person Re-ID, we consider OS-
Net, DenseNet-121, MobileNet V2, and AlignedReID. All models are 
trained on the Market1501 dataset, a widely used benchmark in the 
Re-ID community. OSNet (Omni-Scale Network) [31] is designed explic-
itly for person Re-ID, featuring a multi-stream architecture that captures 
local and global features through dynamic, omni-scale feature aggrega-
tion while remaining lightweight and efficient. DenseNet-121 [32] is a 
popular backbone known for its densely connected layers, which en-
courage feature reuse and efficient gradient propagation, offering ro-
bust performance at a higher computational cost. MobileNet V2 [33] is 
a compact and efficient model optimized for mobile and real-time appli-
cations, utilizing depthwise separable convolutions to significantly re-
duce model size and inference time, with a trade-off in accuracy. Aligne-
dReID [34] builds upon the ResNet backbone and incorporates local 
feature alignment through part-based matching, enhancing the model’s 
ability to handle misalignment and pose variation-two common chal-
lenges in Re-ID scenarios. Together, these baselines offer a range of 
architectural styles, from lightweight mobile networks to specialized 
Re-ID solutions. These models are adapted for our task by leveraging 
tracklets extracted from the input videos. For each individual, we isolate 
sequences of bounding boxes (tracklets) corresponding to their appear-
ances across the video timeline. To ensure robust and fair evaluation, we 
perform multiple comparisons between different runners, averaging the 
results over several runs to mitigate variance introduced by temporal 
sampling or environmental noise.

Implementation details. First, the gait pipeline is pre-trained; once 
fusion is enabled, we first train the fusion layers (lr = 6e-5) and then 
fine-tune the last gait layers with a reduced learning rate (lr = 1e-
5). We trained the network with Adam. The training was conducted 
using a batch size of 32, and each iteration involved generating semi-
hard triplets to enhance convergence and model robustness. The model 
was trained for 2000 iterations, with evaluations performed every 500 
to monitor performance. We employed the Triplet Loss with a mar-
gin (𝛼) 0.6 to encourage a clear separation between positive and neg-
ative pairs in the embedding space. Performance was assessed using 
standard retrieval metrics, including Cumulative Match Characteristic 
(CMC) curves and mean Average Precision (mAP), reported per location 
segment to capture spatial consistency across different checkpoints.

Experimental protocol. We performed a five times 10-fold split 
strategy on the training set. In each run, eight folds were used for 
training, one for validation, and one for internal testing. This approach 
thoroughly evaluated various hyperparameter configurations and fusion 
strategies while keeping the external test set completely untouched. The 
configuration that achieved the best performance was then selected to 
train the final model using the entire training set. The results reported in 
this work are based exclusively on evaluating this final model on the un-
touched test set, ensuring a fair and unbiased assessment of the system’s 
generalization capabilities.

7.  Long-Term Re-ID experiments

Long-term Re-ID is a key focus of this work, as it reflects real-world 
challenges where individuals must be re-identified after extended tem-
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Table 2 
Long-term Re-ID using only gait features. Cross-year evaluations between 
RP1_20 and RP2_23. Metrics reported as mAP / Rank-1 / Rank-5. Baseline 
performances are shown in gray, and the best-performing backbone is high-
lighted in blue.
 Gait Backbone  RP1_20 → RP2_23  RP2_23 → RP1_20

 mAP↑  R1↑  R5↑  mAP↑  R1↑  R5↑
 MobileNet V2 [33]  11.6%  0.0%  11.8%  20.9%  5.9%  29.4%
 DenseNet 121 [32]  16.9%  0.0%  29.4%  24.5%  5.9%  35.3%
 OSNet [31]  31.9%  17.7%  52.9%  28.8%  11.8%  47.1%
 AlignedReID [34]  28.3%  11.8%  47.1%  30.1%  17.6%  41.2%
 GaitBase_C [27]  45.3%  29.4%  64.7%  43.3%  23.5%  64.7%
 GaitBase_O [27]  28.4%  11.8%  52.9%  34.9%  23.5%  47.1%
 GLNp1_C [26]  39.0%  23.5%  58.8%  32.5%  17.6%  41.2%
 GLNp2_C [26]  33.5%  17.6%  52.9%  39.1%  29.4%  47.1%
 GaitGL_C [25]  49.4%  29.4%  64.7%  45.6%  29.4%  58.8%
 GaitGL_G [25]  46.2%  23.5%  76.5%  46.6%  29.4%  64.7%
 GaitGL_O [25]  29.4%  17.6%  35.3%  29.0%  11.8%  47.1%
 GaitPart_C [11]  40.2%  23.5%  47.1%  34.9%  17.6%  64.7%
 GaitPart_G [11]  30.9%  11.8%  52.9%  45.6%  35.3%  58.8%
 GaitPart_O [11]  30.2%  11.8%  47.1%  28.1%  11.8%  52.9%
 GaitSet_C [10]  38.3%  17.6%  58.8%  39.7%  17.6%  70.6%
 GaitSet_G [10]  30.8%  11.8%  52.9%  35.3%  17.6%  47.1%
 GaitSet_O [10]  26.0%  11.8%  35.3%  36.2%  23.5%  47.1%

Table 3 
Long-term Re-ID using only gait features. Cross-year evaluations between 
RP1_20 and RP3_23. Metrics reported as mAP / Rank-1 / Rank-5. Baseline 
performances are shown in gray, and the best-performing backbone is high-
lighted in blue.
 Gait Backbone  RP1_20 → RP3_23  RP3_23 → RP1_20

 mAP↑  R1↑  R5↑  mAP↑  R1↑  R5↑
 MobileNet V2 [33]  14.6%  0.0%  29.4%  14.7%  0.0%  26.5%
 DenseNet 121 [32]  19.2%  0.0%  35.3%  23.6%  11.8%  23.5%
 OSNet [31]  19.9%  0.0%  29.4%  17.8%  0.0%  29.4%
 AlignedReID [34]  27.5%  17.6%  29.4%  24.1%  11.8%  35.3%
 GaitBase_C [27]  38.8%  23.5%  47.1%  34.5%  17.6%  52.9%
 GaitBase_O [27]  26.8%  5.9%  47.1%  32.6%  17.6%  35.3%
 GLNp1_C [26]  35.6%  23.5%  47.1%  34.4%  17.6%  52.9%
 GLNp2_C [26]  35.0%  17.6%  52.9%  39.9%  23.5%  58.8%
 GaitGL_C [25]  34.1%  17.6%  41.2%  39.5%  29.4%  47.1%
 GaitGL_G [25]  53.7%  35.3%  82.4%  54.7%  35.3%  70.6%
 GaitGL_O [25]  34.1%  17.6%  52.9%  31.7%  11.8%  47.1%
 GaitPart_C [11]  49.3%  35.3%  64.7%  50.1%  35.3%  76.5%
 GaitPart_G [11]  47.3%  35.3%  58.8%  51.1%  41.2%  58.8%
 GaitPart_O [11]  33.3%  17.6%  47.1%  34.8%  23.5%  47.1%
 GaitSet_C [10]  40.9%  23.5%  70.6%  46.3%  29.4%  64.7%
 GaitSet_G [10]  29.4%  11.8%  41.2%  32.1%  17.6%  47.1%
 GaitSet_O [10]  29.0%  5.9%  58.8%  35.4%  17.6%  58.8%

poral gaps, often under substantial changes in appearance, context, and 
recording conditions.

Hereafter, the experiments are presented in two stages. First, we 
evaluate different gait backbones independently to identify the most 
suitable architecture for the Re-ID task. This allows us to establish a 
performance baseline and analyze the standalone effectiveness of each 
gait model. Second, we assess the impact of incorporating HAR embed-
dings by comparing performance before and after their integration. As 
described in Section 3, the gait-only experiments use the ℎGAIT𝑖  (please 
refer to Fig. 1) outputs as identity embeddings for discrimination.

7.1.  Gait analysis

The gait backbones analyzed in these experiments follow the 
nomenclature BackboneID_DB, where BackboneID refers to the specific 
appearance-based gait backbone used, and DB denotes the dataset it 
was pre-trained on: O for OU-MVLP, C for CASIA-B, and G for GREW.

Tables 2 and  3 present the performance of various gait and 
appearance-based models in cross-year Re-ID scenarios, specifically 

Table 4 
Long-term Re-ID fusing gait and HAR. Performance on cross-year evaluations 
between RP1_20 and RP2_23 (probe → gallery). Metrics reported as mAP / 
Rank-1 / Rank-5. Baseline appearance-based methods are shown in gray, 
the gait-based backbone under consideration is shown in blue, and the best-
performing HAR model is highlighted in green.
 HAR Backbone  RP1_20 → RP2_23  RP2_23 → RP1_20

 mAP↑  R1↑  R5↑  mAP↑  R1↑  R5↑
 MobileNet V2 [33]  11.6%  0.0%  11.8%  20.9%  5.9%  29.4%
 DenseNet 121 [32]  16.9%  0.0%  29.4%  24.5%  5.9%  35.3%
 OSNet [31]  31.9%  17.7%  52.9%  28.8%  11.8%  47.1%
 AlignedReID [34]  28.3%  11.8%  47.1%  30.1%  17.6%  41.2%
 GaitGL_G [25]  46.2%  23.5%  76.5%  46.6%  29.4%  64.7%
 C2D [21]  50.2%  35.3%  64.7%  50.4%  35.3%  64.7%
 I3D [22]  49.1%  35.3%  58.8%  48.7%  35.3%  64.7%
 I3D𝑁𝐿𝑁 [29]  48.8%  29.4%  82.4%  48.6%  35.3%  70.6%
 SL_4x16 [28]  53.8%  41.2%  76.5%  51.4%  35.3%  64.7%
 SL_4x16𝑁𝐿𝑁 [29]  49.2%  35.3%  76.5%  50.0%  35.3%  64.7%
 SL_8x8 [28]  45.9%  29.4%  76.5%  45.3%  29.4%  70.6%
 SL_8x8𝑁𝐿𝑁 [29]  54.6%  41.2%  76.5%  47.1%  29.4%  70.6%
 SLF_4x16 [23]  54.5%  41.2%  64.7%  46.8%  29.4%  64.7%
 SLF_4x16𝑁𝐿𝑁 [29]  49.5%  29.4%  70.6%  47.0%  29.4%  82.4%
 SLF_8x8 [23]  51.9%  29.4%  76.5%  50.3%  35.3%  76.5%
 SLF_8x8𝑁𝐿𝑁 [29]  48.3%  29.4%  70.6%  48.2%  35.3%  58.8%
 X3D_L [24]  55.2%  41.2%  70.6%  51.4%  35.3%  70.6%
 X3D_M [24]  48.2%  35.3%  58.8%  47.9%  35.3%  52.9%
 X3D_S [24]  46.5%  29.4%  76.5%  47.3%  35.3%  58.8%
 X3D_XS [24]  48.5%  35.3%  76.5%  48.0%  35.3%  58.8%

Table 5 
Long-term Re-ID fusing gait and HAR. Performance on cross-year evaluations 
between RP1_20 and RP3_23 (probe → gallery). Metrics reported as mAP / 
Rank-1 / Rank-5. Baseline appearance-based methods are shown in gray, 
the gait-based backbone under consideration is shown in blue, and the best-
performing HAR model is highlighted in green.
 HAR Backbone  RP1_20 → RP3_23  RP3_23 → RP1_20

 mAP↑  R1↑  R5↑  mAP↑  R1↑  R5↑
 MobileNet V2 [33]  14.6%  0.0%  29.4%  14.7%  0.0%  26.5%
 DenseNet 121 [32]  19.2%  0.0%  35.3%  23.6%  11.8%  23.5%
 OSNet [31]  19.9%  0.0%  29.4%  17.8%  0.0%  29.4%
 AlignedReID [34]  27.5%  17.6%  29.4%  24.1%  11.8%  35.3%
 GaitGL_G [25]  53.7%  35.3%  82.4%  54.7%  35.3%  70.6%
 C2D [21]  51.1%  35.3%  76.5%  56.5%  41.2%  76.5%
 I3D [22]  51.3%  29.4%  76.5%  60.0%  47.1%  70.6%
 I3D𝑁𝐿𝑁 [29]  51.3%  29.4%  82.4%  53.9%  35.3%  82.4%
 SL_4x16 [28]  50.1%  29.4%  82.4%  53.8%  41.2%  70.6%
 SL_4x16𝑁𝐿𝑁 [29]  52.2%  35.3%  76.5%  56.1%  41.2%  76.5%
 SL_8x8 [28]  56.2%  35.3%  88.2%  54.4%  35.3%  76.5%
 SL_8x8𝑁𝐿𝑁 [29]  58.0%  35.3%  88.2%  63.3%  47.1%  76.5%
 SLF_4x16 [23]  53.8%  35.3%  76.5%  57.6%  41.2%  82.4%
 SLF_4x16𝑁𝐿𝑁 [29]  57.7%  41.2%  82.4%  56.4%  41.2%  76.5%
 SLF_8x8 [23]  53.8%  29.4%  88.2%  58.7%  41.2%  76.5%
 SLF_8x8𝑁𝐿𝑁 [29]  54.1%  29.4%  88.2%  61.4%  47.1%  76.5%
 X3D_L [24]  63.8%  47.1%  82.4%  65.7%  52.9%  82.4%
 X3D_M [24]  51.4%  35.3%  76.5%  54.3%  41.2%  76.5%
 X3D_S [24]  58.3%  41.2%  88.2%  58.3%  41.2%  82.4%
 X3D_XS [24]  50.9%  29.4%  76.5%  60.3%  47.1%  70.6%

between recordings from 2020 and 2023. As expected, this setting 
is significantly more challenging than same-year evaluations due to 
long-term appearance changes, domain shifts, and real-world varia-
tions in clothing, posture, and lighting. Appearance-based baselines 
such as MobileNet V2, DenseNet 121, OSNet, and AlignedReID (high-
lighted in gray) exhibit low performance across all metrics. For in-
stance, MobileNet V2 achieves 0.0% Rank-1 in several configurations, 
and DenseNet never exceeds 11.8% in Rank-1, underscoring their lim-
ited capacity to generalize temporally.

In contrast, gait-based models show substantially stronger perfor-
mance. In the RP1_20 → RP2_23 evaluation, GaitGL_C achieves the 
highest mAP at 49.4% and ties with GaitBase_C for the best Rank-1 
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Fig. 3. CMC curves for the long-term evaluation between RP1_20 and RP2_23, comparing HAR-enhanced models. GaitGL_G is shown in black dotted, and AlignedReID 
(baseline) in red dotted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

score (29.4%), while GaitGL_G obtains the highest Rank-5 accuracy 
(76.5%) and a competitive mAP (46.2%). In the reverse direction 
(RP2_23 → RP1_20), GaitGL_G slightly outperforms GaitGL_C in mAP 
(46.6%) and matches its Rank-1 score (29.4%), confirming its robust-
ness when trained on in-the-wild GREW data.

Performance generally declines in the second half of the table, cov-
ering the RP1_20 ↔ RP3_23 setting, indicating greater difficulty in this 
long-term pair. Still, GaitGL_G emerges as the top performer in both 
directions, achieving the highest mAP (53.7% and 54.7%), Rank-1 
(35.3%), and Rank-5 (82.4% and 70.6%). GaitPart_C and GaitPart_G 
follow closely but remain consistently behind GaitGL_G across all met-
rics. These findings highlight the importance of both model architec-
ture and training dataset, with GREW-trained backbones offering supe-
rior generalization in long-term, real-world scenarios. This establishes 
GaitGL_G, i.e., GaitGL trained on GREW, as the most robust and reliable 
backbone across evaluation protocols and the most suitable candidate 
for further integration with HAR embeddings.

7.2.  HAR integration

Tables 4 and  5 present the performance of the proposed two-stream 
model on the long-term Re-ID tasks, where HAR features are inte-
grated with the gait backbone via cross-attention, as detailed in Sec-
tion 3. Compared to the gait-only baseline GaitGL_G (highlighted in 
blue), adding HAR consistently improves performance across all met-
rics, particularly in mAP and Rank-1 accuracy. In the RP1_20 → RP2_23 
and RP2_23 → RP1_20 scenarios, GaitGL_G achieves mAP scores of 
46.2% and 46.6%, respectively. When fused with HAR, models such as 
SL_8x8𝑁𝐿𝑁 , SLF_4x16, and X3D_L surpass these baselines. The best per-
former, X3D_L, improves mAP by nearly nine percentage points (55.2% 
and 51.4% mAP), with corresponding Rank-1 gains of up to 11.8% on 
average. These results highlight the value of integrating temporal and 
activity-level cues for long-term person Re-ID.

In the RP1_20 → RP3_23 and RP3_23 → RP1_20 evaluations, the gap 
widens further. The GaitGL_G baseline yields 53.7% and 54.7% mAP, 
while X3D_L again achieves the highest scores at 63.8% and 65.7% 
mAP, representing a gain of more than ten percentage points. Similarly, 
Rank-1 improves from 35.3% to 52.9% in the RP3_23 → RP1_20 di-
rection. Other strong HAR models like SLF_8x8𝑁𝐿𝑁 , SLF_4x16𝑁𝐿𝑁 , and 
SL_8x8𝑁𝐿𝑁  also show consistent improvements over the gait-only set-
ting.

We also present CMC curves to analyze how HAR integration im-
pacts person Re-ID performance. These curves visualize the rank-based 
retrieval accuracy of the most promising HAR-enhanced configurations 
(e.g., X3D_L, SL_4x16𝑁𝐿𝑁 , and SL_8x8𝑁𝐿𝑁 ) in comparison with the best-
performing appearance-based baseline (AlignedReID) and the gait-only 
backbone (GaitGL_G).

The CMC curves cover all four long-term settings: (RP1_20 ↔ RP2_23, 
RP1_20 ↔ RP3_23). By highlighting the probability of correctly identi-

fying the target at various ranks, these visualizations provide deeper 
insight into where HAR contributes most through early rank improve-
ments (e.g., Rank-1 and Rank-5) or enhanced overall retrieval consis-
tency.

Fig. 3 shows the CMC curves for the long-term Re-ID between 
RP1_20 and RP2_23. In this more challenging setting, the integration 
of HAR demonstrates consistent improvements over both the gait-only 
and appearance-only baselines.

In the RP1_20 → RP2_23 direction, X3D_L achieves the best over-
all performance, with 41.2% Rank-1 accuracy and steady improve-
ments across higher ranks, reaching 94.1% by Rank-9 and 100.0% by 
Rank-16. Slow_8x8𝑁𝐿𝑁  and Slow_4x16𝑁𝐿𝑁  also perform well, reach-
ing 76.5% Rank-5 and converging to 100.0% by Rank-17. GaitGL_G 
lags at Rank-1 (23.5%) but catches up quickly by Rank-4 and matches 
the HAR-enhanced models in the final ranks. AlignedReID performs the 
worst across all ranks, achieving only 11.8% at Rank-1 and remaining 
below 50% until Rank-5.

In the reverse direction (RP2_23 → RP1_20), all three HAR-enhanced 
models maintain their advantage. X3D_L leads early with 35.3% Rank-1 
and reaches 88.2% by Rank-9. Slow_4x16𝑁𝐿𝑁  performs similarly, while 
Slow_8x8𝑁𝐿𝑁  converges faster after Rank-7. GaitGL_G shows slightly 
weaker early-rank performance than the HAR models (29.4% Rank-1) 
but steadily closes the gap at higher ranks. AlignedReID falls behind 
again, showing low early-rank accuracy (17.6% Rank-1) and slower 
convergence toward 100.0%.

These results demonstrate that incorporating HAR features usually 
boosts early-rank retrieval performance while contributing to more sta-
ble performance across higher ranks. The performance gap between 
GaitGL_G and HAR-fused models is more pronounced in the cross-year 
setting than in the same-year evaluation, reinforcing the robustness and 
long-term Re-ID capacity of HAR-enhanced architectures.

Fig. 4 illustrates the most challenging cross-year evaluation setting: 
RP1_20 ↔ RP3_23. Despite the increased difficulty caused by the three-
year gap and different locations, HAR-enhanced models outperform the 
gait-only and appearance-based baselines.

In the RP1_20 → RP3_23 scenario, X3D_L achieves the strongest 
early-rank performance, with 47.1% at Rank-1 and 76.5% by Rank-
3. Slow_8x8𝑁𝐿𝑁  quickly catches up at Rank-3 (82.4%) and holds 
steady through Rank-9 before converging to 100.0% at Rank-15. 
Slow_4x16𝑁𝐿𝑁  demonstrates slightly weaker early-rank accuracy but 
converges similarly by Rank-15. GaitGL_G, while showing relatively 
solid performance (35.3% Rank-1), trails behind the HAR models at 
most ranks and only aligns with them around Rank-13. AlignedReID re-
mains the least effective, with just 17.6% at Rank-1 and only reaching 
70.6% by Rank-13.

In the reverse direction, RP3_23 → RP1_20, the overall trend persists. 
X3D_L leads with 52.9% Rank-1, outperforming all others across early 
ranks. Slow_8x8𝑁𝐿𝑁  and Slow_4x16𝑁𝐿𝑁  also deliver competitive re-
sults, achieving 70.6% and 52.9% Rank-1, respectively. GaitGL_G main-
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Fig. 4. CMC curves for the long-term evaluation between RP1_20 and RP3_23, comparing HAR-enhanced models. GaitGL_G is shown in black dotted, and AlignedReID 
(baseline) in red dotted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

tains a solid but slightly lower trajectory, starting at 35.3% Rank-1 and 
only catching up from Rank-9 onward. AlignedReID again lags across 
early and mid ranks, only surpassing 50% accuracy after Rank-9.

Comparing these results with both the RP1_20 ↔ RP2_23 evalua-
tion and the same-year setting, the improvements introduced by HAR 
are more substantial in these highly unconstrained, long-term scenar-
ios. HAR-enhanced models offer better Rank-1 and Rank-5 performance 
and show faster convergence in the CMC curves. Among them, X3D_L 
emerges as the most consistent across all settings, confirming its robust-
ness in both short-term and long-term Re-ID. These findings reinforce 
the value of combining gait and action-level information, mainly when 
dealing with significant spatio-temporal gaps and real-world variability.

8.  Short-term Re-ID experiments

As expected, the short-term Re-ID experiment performs better than 
the long-term results discussed in the previous section. Evaluating the 
model across different locations on the same day provides a more favor-
able setting with less variation in appearance, environment, and record-
ing conditions.

8.1.  Gait analysis

Table 6 presents the results for the short-term Re-ID scenario, where 
the objective is to re-identify individuals across different locations 

Table 6 
Short-term Re-ID using only gait features. Performance on same-year cross-
location evaluations (probe → gallery). Metrics reported as mAP / Rank-1 / 
Rank-5. Baseline performances are shown in gray, and the best-performing 
backbone is highlighted in blue.
 Gait Backbone  RP2_23 → RP3_23  RP3_23 → RP2_23

 mAP↑  R1↑  R5↑  mAP↑  R1↑  R5↑
 MobileNet V2 [33]  32.5%  17.7%  47.1%  21.6%  5.9%  29.4%
 DenseNet 121 [32]  20.0%  5.9%  23.5%  25.2%  11.8%  47.1%
 OSNet [31]  30.8%  11.8%  64.7%  21.6%  5.9%  29.4%
 AlignedReID [34]  84.4%  76.5%  94.1%  73.0%  70.6%  82.4%
 GaitBase_C [27]  42.3%  23.5%  64.7%  44.6%  29.4%  76.5%
 GaitBase_O [27]  57.7%  35.3%  76.5%  65.5%  47.1%  88.2%
 GLNp1_C [26]  55.2%  41.2%  70.6%  46.8%  23.5%  82.4%
 GLNp2_C [26]  56.1%  35.3%  76.5%  57.8%  29.4%  88.2%
 GaitGL_C [25]  59.2%  47.1%  82.4%  63.2%  47.1%  82.4%
 GaitGL_G [25]  73.6%  64.7%  94.1%  84.7%  76.5%  100.0%
 GaitGL_O [25]  49.8%  35.3%  70.6%  58.8%  41.2%  70.6%
 GaitPart_C [11]  38.3%  23.5%  52.9%  39.9%  23.5%  52.9%
 GaitPart_G [11]  60.5%  47.1%  76.5%  76.0%  64.7%  94.1%
 GaitPart_O [11]  49.9%  35.3%  76.5%  55.8%  35.3%  88.2%
 GaitSet_C [10]  58.7%  47.1%  82.4%  56.9%  41.2%  76.5%
 GaitSet_G [10]  50.8%  29.4%  76.5%  56.4%  41.2%  70.6%
 GaitSet_O [10]  51.9%  35.3%  64.7%  51.6%  35.3%  70.6%

within the same day. The metrics reported are mAP, Rank-1, and Rank-
5 accuracy. Baseline models based on appearance cues (e.g., MobileNet 
V2, DenseNet, OSNet, and AlignedReID) are shown in gray. Among 
these, AlignedReID stands out with strong performance, indicating the 
strength of appearance features when clothing and context remain rela-
tively consistent. However, when evaluating gait-based models, several 
backbones outperform these baselines, especially those trained on more 
extensive or diverse datasets. GaitGL_G, trained on the GREW dataset, 
achieves the highest overall performance, with an mAP of 84.7% and a 
perfect Rank-5 score in the RP3_23 → RP2_23 direction. This suggests 
that training on unconstrained, real-world data provides a significant ad-
vantage for cross-location generalization. Other high-performing back-
bones include GaitPart_G and GaitBase_O, further reinforcing the impor-
tance of architecture choice and pre-training data.

Comparing Tables 2, 3 and 6, all models show a noticeable drop in 
performance under long-term Re-ID (Tables 2 and 3), particularly the 
appearance-based baselines. For example, AlignedReID, which reached 
84.4% mAP and 76.5% Rank-1 in the short-term setting, drops below 
30% mAP and 20% Rank-1 across most long-term evaluations. This 
stark contrast demonstrates the limitations of appearance cues in long-
term Re-ID tasks. Gait-based methods, while also affected, maintain rela-
tively stable performance over time. Notably, GaitGL_G is the only back-
bone to consistently perform well in both short-term and long-term set-
tings, achieving 73.6% / 64.7% / 94.1% in the short-term scenario and 
up to 54.7% / 35.3% / 82.4% in the long-term scenario.

8.2.  HAR integration

Table 7 presents the results of the short-term Re-ID experiments 
when HAR features are integrated into the pipeline through the cross-
attention mechanism described in Section 3. In this configuration, the 
fused embeddings 𝑓𝑖 discriminate between identities (please refer to 
Fig. 1). The gait-based model GaitGL_G is used as the backbone and 
is highlighted in blue, while each HAR model is tested in combination 
with this backbone. The results demonstrate that incorporating HAR sig-
nificantly enhances Re-ID performance compared to using gait alone.

For example, GaitGL_G by itself achieves 73.6% mAP and 64.7% 
Rank-1 in the RP2_23 → RP3_23 direction, and an impressive 84.7% 
mAP and 76.5% Rank-1 in the reverse direction. When HAR is added, 
many models exceed or match these results. Notably, the best overall 
performance is achieved by SL_4x16𝑁𝐿𝑁 , which obtains 85.2% mAP 
and 76.5% Rank-1 in the RP2_23 → RP3_23 case, and ties with GaitGL_G 
at 84.7% mAP and 76.5% Rank-1 in reverse. Other top-performing HAR 
models include X3D_XS (84.3% / 76.5%) and X3D_L (81.0% / 70.6%) 
in the forward direction, all of which outperform the gait-only baseline.

Even lightweight HAR models such as X3D_S and C2D yield notable 
improvements, suggesting that HAR features consistently provide com-
plementary motion and activity-level cues that enhance identity dis-
crimination. Overall, these findings validate the effectiveness of the
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Fig. 5. CMC curves for short-term evaluation between RP2_23 and RP3_23, comparing HAR-enhanced models. GaitGL_G is shown in black dotted, and AlignedReID 
(baseline) in red dotted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 7 
Short-term Re-ID results fusing gait and HAR. Performance evaluation results 
for same-year, cross-location Re-ID (probe → gallery). Performance is reported 
using mAP, Rank-1, and Rank-5 metrics. Baseline appearance-based methods 
are shown in gray, the gait-based backbone under consideration is shown in 
blue, and the best-performing HAR model is highlighted in green.
 HAR Backbone  RP2_23 → RP3_23  RP3_23 → RP2_23

 mAP↑  R1↑  R5↑  mAP↑  R1↑  R5↑
 MobileNet V2 [33]  32.5%  17.7%  47.1%  21.6%  5.9%  29.4%
 DenseNet 121 [32]  20.0%  5.9%  23.5%  25.2%  11.8%  47.1%
 OSNet [31]  30.8%  11.8%  64.7%  21.6%  5.9%  29.4%
 AlignedReID [34]  84.4%  76.5%  94.1%  73.0%  64.7%  82.4%
 GaitGL_G [25]  73.6%  64.7%  94.1%  84.7%  76.5%  100.0%
 C2D [21]  77.9%  64.7%  94.1%  79.9%  64.7%  100.0%
 I3D [22]  80.4%  70.6%  94.1%  75.7%  58.8%  100.0%
 I3D𝑁𝐿𝑁 [29]  76.7%  64.7%  100.0%  81.9%  70.6%  94.1%
 SL_4x16 [28]  77.0%  64.7%  94.1%  77.5%  64.7%  100.0%
 SL_4x16𝑁𝐿𝑁 [29]  85.2%  76.5%  94.1%  84.7%  76.5%  100.0%
 SL_8x8 [28]  83.6%  76.5%  94.1%  80.4%  64.7%  100.0%
 SL_8x8𝑁𝐿𝑁 [29]  80.6%  70.6%  94.1%  80.4%  64.7%  100.0%
 SLF_4x16 [23]  71.1%  58.8%  88.2%  84.7%  76.5%  100.0%
 SLF_4x16𝑁𝐿𝑁 [29]  71.3%  58.8%  94.1%  81.6%  70.6%  100.0%
 SLF_8x8 [23]  78.6%  64.7%  100.0%  82.4%  70.6%  100.0%
 SLF_8x8𝑁𝐿𝑁 [29]  76.7%  64.7%  94.1%  77.5%  58.8%  100.0%
 X3D𝐿 [24]  81.0%  70.6%  94.1%  81.9%  70.6%  100.0%
 X3D𝑀 [24]  65.1%  47.1%  94.1%  77.0%  58.8%  100.0%
 X3D𝑆 [24]  80.0%  70.6%  94.1%  81.4%  70.6%  100.0%
 X3D𝑋𝑆 [24]  84.3%  76.5%  94.1%  81.9%  70.6%  94.1%

cross-attention fusion strategy and demonstrate that augmenting gait 
with HAR improves robustness in short-term Re-ID tasks.

When comparing these results to those in Tables 4 and 5 (long-
term Re-ID with HAR), we observe that performance also drops across 
the board in the long-term setting, which is expected due to the 
three-year gap and environmental differences between the record-
ings. For example, the best mAP in the short-term scenario reaches 
85.2% (SL_4x16𝑁𝐿𝑁 ), while in the most challenging temporal case 
(RP1_20 → RP3_23), the best mAP is 63.8% (X3D_L). However, the rel-
ative improvements introduced by HAR remain consistent in both sce-
narios, validating the generalization capacity of fused motion/activity-
based representations. Moreover, HAR-enhanced models consistently 
outperform the GaitGL_G baseline (in blue) in all short-term and long-
term cases, establishing HAR integration-especially with two models 
such as X3D_L and SLF_8x8𝑁𝐿𝑁 , demonstrating an effective and resilient 
solution for long-term person Re-ID in real-world settings.

The CMC curves for the short-term Re-ID cover two settings: 
RP2_23 ↔ RP3_23. By highlighting the probability of correctly iden-
tifying the target at various ranks, these visualizations provide deeper 
insight into where HAR contributes most through early rank improve-

ments (e.g., Rank-1 and Rank-5) or enhanced overall retrieval consis-
tency.

Fig. 5 presents the CMC curves for the short-term Re-ID evaluations. 
Across both directions, integrating HAR features leads to consistent per-
formance gains over the gait-only and appearance-only baselines.

In the RP2_23 → RP3_23 direction, Slow_4x16𝑁𝐿𝑁  (SL_4x16𝑁𝐿𝑁 ) 
achieves the best early-rank performance with 76.5% Rank-1 and 
88.2% Rank-2 accuracy, converging to 100.0% by Rank-7. X3D_L 
and Slow_8x8𝑁𝐿𝑁  (SL_8x8𝑁𝐿𝑁 ) show very competitive results, reach-
ing 70.6% Rank-1 and also converging to 100.0% by Rank-9. No-
tably, GaitGL_G lags slightly behind at early ranks (64.7% Rank-1, 
70.6% Rank-2) but rapidly improves after Rank-4. AlignedReID shows 
strong Rank-1 performance (76.5%) but flattens slightly before reaching 
100.0%, indicating weaker retrieval consistency at higher ranks com-
pared to HAR-enhanced models.

In the reverse direction (RP3_23 → RP2_23), the trend continues 
with all HAR-enhanced models surpassing both baselines. Slow_8x8𝑁𝐿𝑁
achieves the fastest convergence, reaching 100.0% by Rank-3. X3D_L 
and Slow_4x16𝑁𝐿𝑁  follow closely, also achieving 100.0% by Rank-4. 
While GaitGL_G maintains a strong baseline (76.5% Rank-1), it con-
verges more slowly than the HAR-fused models. AlignedReID again per-
forms the weakest at early and mid ranks, achieving only 64.7% Rank-1 
and not reaching 100.0% until Rank-13.

These results confirm that HAR integration improves early retrieval 
accuracy and convergence speed in short-term Re-ID tasks. Among the 
HAR-enhanced models, Slow_4x16𝑁𝐿𝑁 , X3D_L, and Slow_8x8𝑁𝐿𝑁  con-
sistently outperform the gait-only and appearance-only baselines, rein-
forcing the value of motion-aware representations in realistic, location-
varying settings.

9.  Ablation study on fusion strategies

To further analyze the role of the fusion mechanism in our frame-
work, we provide an ablation study using the best-performing gait back-
bone (GaitGL trained on GREW) and the best-performing HAR back-
bone (X3D-L) identified in our previous experiments. We evaluate three 
alternative fusion strategies: cross-attention, cosine similarity-based fu-
sion, and concatenation. Each represents a distinct way of integrating 
gait and HAR embeddings. Cross-attention adaptively emphasizes be-
havioral cues conditioned on gait, while cosine similarity enforces align-
ment by maximizing directional closeness between modalities. In con-
trast, concatenation stacks the embeddings without explicit interaction, 
serving as a baseline.

All variants were trained following the same protocol described 
in Section 3, using triplet loss with semi-hard negative mining and 
the modality-aware distance formulation to balance the contribution 
of gait and HAR streams. By fixing the underlying encoders to their 
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Fig. 6. CMC curves for long-term evaluation (RP1_20–RP2_23) with HAR model X3DL under different fusion strategies. Solid lines show the best model per fusion; 
dotted lines denote reference methods: GaitGL_G (black) and AlignedReID (red).. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 7. CMC curves for long-term evaluation (RP1_20–RP3_23) with HAR model X3DL under different fusion strategies. Solid lines show the best model per fusion; 
dotted lines denote reference methods: GaitGL_G (black) and AlignedReID (red).. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

strongest configurations, this ablation isolates the impact of the fu-
sion strategy itself. The comparative results quantify the impact of each 
method on retrieval performance in both short-term and long-term set-
tings, highlighting the advantages of attention-based fusion over simpler
alternatives.

In the long-term ReID evaluation, cross-attention consistently out-
performed the other fusion strategies across all transfer scenarios. 
For RP2_23→RP1_20 and the reverse direction (Fig. 6), cross-attention 
achieved higher mAP values (51.4% and 55.2%, respectively) com-
pared to concat (44.8% and 41.6%) and cosine (31.9% and 31.7%). 
Similar improvements were observed in transfers involving RP3_23 
(Fig. 7), where the cross-attention fusion reached 63.8% mAP for 
RP1_20→RP3_23 and 65.7% for RP3_23→RP1_20, clearly surpassing 
concat (45.3% and 53.4%) and cosine (33.9% and 46.8%). In all cases, 
cross-attention also outperformed the baselines GaitGL_G and Aligne-
dReID, demonstrating superior generalization capability in long-term 
cross-environment ReID.

10.  Conclusion

In this work, we propose a two-stream architecture for person Re-ID 
that jointly models gait and HAR features. Our framework leverages ex-
isting components (BiLSTMs, pre-trained HAR extractors, attention) but 
is original in how they are integrated and adapted to the long-term Re-
ID challenge. The model learns discriminative embeddings by treating 
gait as the primary identity signal and enriching it with activity cues 
through cross-attention, thereby improving both short-term and long-
term performance.

We also introduce a real-world long-term Re-ID dataset from two 
editions (2020, 2023) of an ultra-distance sporting event. It captures 
natural variations across years and locations, enabling realistic longitu-
dinal evaluation.

Our fused gait-HAR model outperformed appearance-based and gait-
only baselines, with +12% mAP in long-term and +11.6% in short-
term setups. HAR-enhanced models also improved early-rank retrieval, 
confirming the value of multimodal fusion in unconstrained conditions. 
Limitations include reliance on reliable silhouettes and a HAR branch 
based on pre-trained backbones. The test set comprises 17 identities and 
51 videos, resulting in 1734 comparisons under a subject-disjoint pro-
tocol, which ensures a meaningful and comprehensive assessment.

This two-stream paradigm opens avenues for broader multimodal 
identity modeling. Future work may expand datasets to more diverse 
contexts, validating generalization. Overall, we present a robust frame-
work that bridges motion understanding and identity recognition in real-
world Re-ID.
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