Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/149956
Campo DC Valoridioma
dc.contributor.authorSanta María Megía, Ignacioen_US
dc.date.accessioned2025-10-15T15:18:05Z-
dc.date.available2025-10-15T15:18:05Z-
dc.date.issued2007en_US
dc.identifier.issn0370-3207en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/149956-
dc.description.abstractIt is well known since the 1940’s that Sº, S1 and S3 are the only spheres admitting a topological group structure. In this short note we provide an easy and direct proof (without using Lie group theory nor dimension theory) of the fact that S2n does not admit such a structure for any n > 0. The proof is based upon the notion of group actions on a topological space; loosely speaking what makes possible this argument is that there are more self-homeomorphisms of a topological group than of an even sphere.en_US
dc.languageengen_US
dc.relation.ispartofRevista de la Real Academia de Ciencias Exactas, Físicas y Naturalesen_US
dc.sourceRevista Real Academia de Ciencias. Zaragoza. 62: p. 75–79, (2007)en_US
dc.subject1210 Topologíaen_US
dc.subject.otherTopological groupen_US
dc.subject.otherSphereen_US
dc.titleWhich spheres admit a topological group structure?en_US
dc.typeArticleen_US
dc.description.lastpage79en_US
dc.description.firstpage75en_US
dc.relation.volume62en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.description.numberofpages5en_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-EGBen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.fullNameSanta María Megía, Ignacio-
Colección:Artículos
Adobe PDF (74,96 kB)
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.