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Which spheres admit a topological group structure?
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Abstract

It is well known since the 1940’s that S°, S' and S? are the only spheres admitting
a topological group structure. In this short note we provide an easy and direct proof
(without using Lie group theory nor dimension theory) of the fact that S does not
admit such a structure for any n > 0. The proof is based upon the notion of group
actions on a topological space; loosely speaking what makes possible this argument
is that there are more self-homeomorphisms of a topological group than of an even
sphere.
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1 Introduction

The proof of the fact that the only Euclidean spheres that can be made into topological
groups are S°, S! and S? is given in [7, p. 144], it refers to a result from Cartan [2, p. 179]
and uses Lie group theory and dimension theory for the proof.

Other proofs found in the literature use the fact that the only H-spaces among S",
n > 0, are those given by n = 0,1,3,7 (see [1, Theorem 1.1.1]). Since a topological
group must be an H-space, the only ones to test are for those values of n. Moreover, in
[4, Theorem 1] it can be found a direct proof of the fact that S” is not a Lie group and
therefore not a topological group, because “all locally euclidean groups are isomorphic to
Lie groups” [5, p. 213].

None of these proofs are elementary. The goal of this note is to present a more simple
proof of the fact that no even dimensional sphere admits a topological group structure.

In order to make the paper self-contained we define the tools required for its develop-

ment.
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2 Preliminaries

In this section we provide the definition, some examples and some properties of topological

groups. For a deeper comprehension of the subject read [6].

Definition 1. Let G be a group (with multiplicative notation) and a topological space at
the same time. Then G s said to be a topological group if the group operation and the

mverse operation are continuous mappings:

GxG — d nv: G — G

(f.9) — f-g g — g '

Example 1. We now give the topological group structure for S, n € {0,1,3}.

(n=0) As a topological space it is the discrete space {—1,1} and if it is given a group

structure we get Zs, so S ~ Zs.

(n=1) Let us consider S' as the unitary complex numbers, endowed with the complex
product and with the topology induced from the usual one of C. Clearly, S' is a
topological group and it is usually denoted by T.

(n = 3) We manage to see S* in C x C by means of the following product:

Let us represent each element (z,w) of C x C by a matriz of the form

(57

and define the product of two elements as the matriz multiplication.

This representation permits us to write the Euclidean norm of such a (z,w) as

(2, )| = V/det(z, w).

When C x C is seen in this fashion it is called the quaternionic space and denoted
by H. Now it is clear that S? is the set of unitary quaternions and that this product
operation makes it a topological group since, as a complex function, it is continuous
and the inversion map (which is the matriz inversion): (z,w)™' = (Z, —w) is also a

continuous complex function in S3.

Proposition 1. Let G be a topological group. Then for each a € G the left and right
translations, given by a, are homeomorphisms. Furthermore, the inversion map is also an

homeomorphism.
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Proof. Let a € G and L, : G — G (with L,(g) = a - g) be the left translation given by a.
Then L, is a composition of continuous functions and its inverse function is L,-1. Hence
L, is a homeomorphism (it follows analogously for the right translation R, : G — G,
Ra(g) =g - a).

To show that the inversion map is a homeomorphism, just notice that it is its own

inverse (it is continuous by hypothesis). O

Next, we define homogeneity in the context of topological spaces and we show that

every topological group is homogeneous.

Definition 2. A topological space X is said to be homogeneous if for any x,y € X, there
exists a homeomorphism f: X — X such that f(z) = y.

Observation 1. Every topological group is homogeneous. This follows by proposition 1,

since given a,b € G we can define the homeomorphism f = L,-1 o Ry, which verifies

f(a)="b.

But not every homogeneous topological space can be made into a topological group,

the Sorgenfrey line is a counterexample.

Example 2. The Sorgenfrey line is a homogeneous topological space but not a topological
group.

It is homogeneous: given a,b in the Sorgenfrey line, the map f(x) = x+b—a sends a
to b and is an homeomorphism since it is continuous, and its inverse, f~*(y) =y —b+a,
15 also continuous.

It is not a topological group with the addition of real numbers because the inverse
operation fails to be continuous.

Furthermore, it does not admit a topological group structure at all: every first countable
topological group is metrizable but the Sorgenfrey line is first countable and not metrizable.
Therefore, there is no group operation in R that could turn the Sorgenfrey line into a

topological group.

The two dimensional sphere is another example of an homogeneous topological space

(think of rotations) but not a topological group, as we shall see.

3 S$? is not a topological group.

First of all, we recall some notions about group actions on topological spaces and the
concept of degree of a continuous map from a topological space to itself. Let us also
fix some notation: X is a topological space, G a group and Homeo(X) the group of

self-homeomorphisms of X.
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Definition 3. We say that G acts on X if there exists an homomorphism © : G —
Homeo(X). For each g € G we write ©, instead of O(g).

If, in addition, ©, : X — X has no fized points for any g € G but for the identity
(i.e., Oy4(x) #x, Vo € X andV g € G\ {e}), then the action is said to be free (or that
G acts freely on X ).

Observation 2. Every topological group acts freely on itself. Indeed, since translations
are homeomorphisms we can define the map L : G — Homeo(G) such that g — L, which
is an homomorphism. Moreover, L, is a translation, so if g # e then Ly has no fizved

points.

The following definition, properties and proposition can be found in [3, pp. 134-135].
They are the tools we use to reach our goal. First, let us fix n € N\ {0}.

Let f:S™ — S" be a continuous map. Now consider the induced endomorphism of
the n'*-homology group of the n-sphere, f, : H,(S*) — H,(S"). Since H, (S") ~ Z, there
exists a unique integer d such that f,(«) = da for every a € H,,(S™).

Definition 4. We define the degree of f as deg(f) = d.
Some properties of the degree that we shall use further on are:
(i) deg(id) = 1 where id : S® — S™ is the identity map;
(ii) if f,g: S™ — S™ are continuous maps, then deg(f o g) = deg(f) - deg(g);
(iii) let f and g be as above. Then, they are homotopic if and only if deg(f) = deg(g);

(iv) if f is the reflection of S that interchanges the hemispheres determined by a fixed
equator, then deg(f) = —1;

(v) let id™ be the antipodal map, then deg(id™) = (—1)""!;

(vi) if f:S"® — S" is a continuous map without fixed points, then deg(f) = (—1)"*1.

Hence from (iii), (v) and (vi) we get that every continuous map from the n-sphere in
itself without fixed points is homotopic to the antipodal map. The converse statement is
false, for if n is odd then (i), (iii) and (v) imply that the antipodal map is homotopic to
the identity; and if n is even then (iv), (v) and (vi) imply that a reflection as in (iv) is
homotopic to the antipodal map.

As a direct consequence of the definition of degree and its properties we get the next

result [3, Proposition 2.29].

Proposition 2. Z, is the only nontrivial group that can act freely on S™ if n is even.
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Proof. Let n be even and let G act freely on S™. Then there exists a homomorphism © :
G — Homeo(S™). Hence for each g € G we can compute the degree deg(©,). Furthermore,

since © is an homomorphism, from (i) and (ii) we have the following equalities:
deg(0,) - deg(0©,-1) = deg(Oy 0 O,-1) = deg(O.) = deg(id) = 1.

So deg(©,) = deg(©,4-1) = £1, because the degree must be an integer.

We can now construct a degree function d : G — Zy = {£1} as d(g) = deg(©,), which
is an isomorphism. Indeed, d is an homomorphism by (ii) and because G acts freely on
S™ we know that ©, has no fixed points for any g # e. So (vi) implies deg(0,) = —1 and

from (i) we have deg(©.) = 1. Hence d is onto and has trivial kernel. O

Now it is clear that S*" is not a topological group for any n > 0. Otherwise it would
act freely on itself and by proposition 2 it would be isomorphic to Zs, which is clearly a
contradiction.

This statement can be set in a naive way: “If an even-dimensional sphere were a

topological group, it would be isomorphic to the zero-dimensional one”.
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