Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/149813
DC FieldValueLanguage
dc.contributor.authorNuñez Regueiro, Fernando-
dc.contributor.authorFalcón Pulido, Samuel-
dc.contributor.authorBressoux, Pascal-
dc.date.accessioned2025-10-13T13:38:35Z-
dc.date.available2025-10-13T13:38:35Z-
dc.date.issued2025-
dc.identifier.issn1360-2357-
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/149813-
dc.description.abstractThis study explores the effectiveness of large language models (LLMs) in automatically encoding a large set of open-ended responses to obtain data for use in applied statistics. As a case study, we focus on demands-resources fit processes and engagement in teacher education. To probe the validity of LLMs in investigating these processes, we compare results from measures obtained via ordinary Likert-type items (scale measures), and measures obtained from automatically encoding open-ended questions (LLM measures) for the same sample of student teachers (N = 499, 82% female, Mage=23.5 years). Results demonstrate the reliability of LLMs in processing and quantifying large amounts of open-ended data quickly and as accurately as scale measures. Moreover, results concur to reveal an "optimal margin" of demands-resources fit in student teacher engagement. Accordingly, study resources surpassing study demands maximizes engagement, whereas insufficient resources minimize it, and moderate levels of both demands and resources lead to intermediate engagement. By contrast, high or low levels of both demands and resources are suboptimal for engagement. Taken together, these findings demonstrate that LLM-derived statistics offer an efficient and reliable approach to extracting data from open-ended responses, enabling the large-scale analysis of qualitative insights while preserving their richness. This method facilitates the integration of qualitative and quantitative approaches, enhancing the study of individual behavior, and holds significant potential for enhancing digital education frameworks by supporting adaptive learning systems and digital assessment practices.-
dc.languageeng-
dc.relation.ispartofEducation and Information Technologies-
dc.sourceEducation And Information Technologies [ISSN 1360-2357], (6 October 2025)-
dc.subject5802 Organización y planificación de la educación-
dc.subject.otherQualitative Data-Analysis-
dc.subject.otherPerson-Environment Fit-
dc.subject.otherStudent Engagement-
dc.subject.otherNegativity Bias-
dc.subject.otherValidation-
dc.subject.otherPsychology-
dc.subject.otherManagement-
dc.subject.otherMultilevel-
dc.subject.otherVersions-
dc.subject.otherTrends-
dc.subject.otherStudy Demands-Resources Fit-
dc.subject.otherLarge Language Models-
dc.subject.otherCubic Response Surface Analysis-
dc.subject.otherAi In Education-
dc.subject.otherData Analysis Automation-
dc.titleModeling demands-resources fit in teacher education using open-ended data: a methodological-substantive synergy-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1007/s10639-025-13764-6-
dc.identifier.scopus105018224101-
dc.identifier.isi001587316000001-
dc.contributor.orcid0000-0003-4784-2021-
dc.contributor.orcid0000-0003-3314-1945-
dc.contributor.orcid0000-0001-8018-5612-
dc.contributor.authorscopusid57201429726-
dc.contributor.authorscopusid58147679000-
dc.contributor.authorscopusid6507710612-
dc.identifier.eissn1573-7608-
dc.investigacionCiencias Sociales y Jurídicas-
dc.type2Artículo-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages32-
dc.utils.revision-
dc.contributor.wosstandardWOS:Núñez-Regueiro, F-
dc.contributor.wosstandardWOS:Falcon, S-
dc.contributor.wosstandardWOS:Bressoux, P-
dc.date.coverdateEnero 2025-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-EGB-
dc.description.sjr1,301-
dc.description.jcr4,8-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.esciESCI-
dc.description.miaricds10,9-
dc.description.erihplusERIH PLUS-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IATEXT: Didáctica, Aprendizaje y Motivación en Contextos Específicos-
crisitem.author.deptIU de Análisis y Aplicaciones Textuales-
crisitem.author.orcid0000-0003-3314-1945-
crisitem.author.parentorgIU de Análisis y Aplicaciones Textuales-
crisitem.author.fullNameFalcón Pulido,Samuel-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.