Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/149488
DC FieldValueLanguage
dc.contributor.authorPeiro-Corbacho, Pabloen_US
dc.contributor.authorLara-Abelenda, Francisco J.en_US
dc.contributor.authorChushig-Muzo, Daviden_US
dc.contributor.authorWägner, Anna Maria Claudiaen_US
dc.contributor.authorGranja, Conceiçãoen_US
dc.contributor.authorSoguero-Ruiz, Cristinaen_US
dc.date.accessioned2025-10-07T14:09:40Z-
dc.date.available2025-10-07T14:09:40Z-
dc.date.issued2025en_US
dc.identifier.issn1471-2105en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/149488-
dc.description.abstractBackground : The advancement of technology and continuous glucose monitoring (CGM) systems has introduced several computational and technical challenges for clinicians and researchers. The growing volume of CGM data necessitates the development of efficient computational tools capable of handling and processing this information effectively. This paper introduces GlucoStats, an open-source and multi-processing Python library designed for efficient computation and visualization of a comprehensive set of glucose metrics derived from CGM. It simplifies the traditionally time-consuming and error-prone process of manual CGM metrics calculation, making it a valuable tool for both clinical and research applications. Results : Its modular design ensures easy integration into predefined workflows, while its user-friendly interface and extensive documentation make it accessible to a broad audience, including clinicians and researchers. GlucoStats offers several key features: (i) window-based time series analysis, enabling time series division into smaller ‘windows’ for detailed temporal analysis, particularly beneficial for CGM data; (ii) advanced visualization tools, providing intuitive, high-quality visualizations that facilitate pattern recognition, trend analysis, and anomaly detection in CGM data; (iii) parallelization, leveraging parallel computing to efficiently handle large CGM datasets by distributing computations across multiple processors; and (iv) scikit-learn compatibility, adhering to the standardized interface of scikit-learn to allow an easy integration into machine learning pipelines for end-to-end analysis. Conclusions : GlucoStats demonstrates high efficiency in processing large-scale medical datasets in minimal time. Its modular design enables easy customization and extension, making it adaptable to diverse research and clinical needs. By offering precise CGM data analysis and user-friendly visualization tools, it serves both technical researchers and non-technical users, such as physicians and patients, with practical and research-driven applications.en_US
dc.languageengen_US
dc.relation.ispartofBMC Bioinformaticsen_US
dc.sourceBMC Bioinformatics[EISSN 1471-2105],v. 26 (1), (Diciembre 2025)en_US
dc.subject32 Ciencias médicasen_US
dc.subject320102 Genética clínicaen_US
dc.subject.otherContinuous Glucose Monitoringen_US
dc.subject.otherFeature Glucose Extractionen_US
dc.subject.otherGlucose Visualizationen_US
dc.subject.otherSliding Time Windowen_US
dc.titleGlucostats: an efficient Python library for glucose time series feature extraction and visual analysisen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s12859-025-06250-wen_US
dc.identifier.scopus105016909119-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid59214986500-
dc.contributor.authorscopusid58896003400-
dc.contributor.authorscopusid57218569405-
dc.contributor.authorscopusid7401456520-
dc.contributor.authorscopusid36086375600-
dc.contributor.authorscopusid55207356700-
dc.identifier.eissn1471-2105-
dc.identifier.issue1-
dc.relation.volume26en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr1,005
dc.description.jcr2,9
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.orcid0000-0002-7663-9308-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameWägner, Anna Maria Claudia-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.