Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/149478
DC FieldValueLanguage
dc.contributor.authorTomašević, Darian-
dc.contributor.authorŠpacapan, Blaž-
dc.contributor.authorPerušić, Ani-
dc.contributor.authorPinčić, Domagoj-
dc.contributor.authorMeden, Blaž-
dc.contributor.authorFreire Obregón, David Sebastián-
dc.contributor.authorEmeršič, Žiga-
dc.contributor.authorŠtruc, Vitomir-
dc.contributor.authorPeer, Peter-
dc.contributor.authorSušanj, Diego-
dc.date.accessioned2025-10-07T11:50:21Z-
dc.date.available2025-10-07T11:50:21Z-
dc.date.issued2025-
dc.identifier.isbn979-8-3315-2487-6-
dc.identifier.issn2165-8528-
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/149478-
dc.description.abstractPerson identification systems based on biometric modalities, such as hand images, require extensive and diverse datasets for effective training. However, real-world datasets are often limited in size and variability, leading to poor generalization, while strict privacy regulations constrain their sharing and use. To address these issues, we introduce the SynPalms framework, an approach for generating diverse palmar-side hand images of novel synthetic identities achieved with identity mixing during sampling. We investigate the impact of synthetic data on a ResNet50-based identification system by comparing the classification accuracy obtained when training with either realworld or synthetic images, as well as when utilizing both real and synthetic data. Our experiments demonstrate the trade-off between classification accuracy and subject privacy, highlighting the potential of synthetic data for training biometric identification systems in a privacy-preserving manner.-
dc.languageeng-
dc.publisherIEEEXPLORE-
dc.relation.ispartofInternational Conference On Ubiquitous And Future Networks, Icufn-
dc.sourceInternational Conference on Ubiquitous and Future Networks, ICUFN[ISSN 2165-8528], p. 359-361, (Enero 2025)-
dc.subject2405 Biometría-
dc.subject.otherNeural Networks-
dc.subject.otherPalmar Hand Image-
dc.subject.otherPerson Identification-
dc.subject.otherSynthetic Data Augmentation-
dc.titleSynPalms: Palm Identification with Synthetic Data-
dc.typeconference_paper-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.relation.conference16th International Conference on Ubiquitous and Future Networks (ICUFN 2025)-
dc.identifier.doi10.1109/ICUFN65838.2025.11169785-
dc.identifier.scopus105018739133-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57226480429-
dc.contributor.authorscopusid60140425100-
dc.contributor.authorscopusid59214315500-
dc.contributor.authorscopusid57202999268-
dc.contributor.authorscopusid57191976811-
dc.contributor.authorscopusid23396618800-
dc.contributor.authorscopusid56097253100-
dc.contributor.authorscopusid17347474600-
dc.contributor.authorscopusid7003277146-
dc.contributor.authorscopusid56941873700-
dc.identifier.eissn2165-8536-
dc.description.lastpage361-
dc.description.firstpage359-
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresos-
dc.utils.revision-
dc.date.coverdateEnero 2025-
dc.identifier.conferenceidevents156064-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.event.eventsstartdate10-09-2025-
crisitem.event.eventsenddate12-09-2025-
Appears in Collections:Actas de congresos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.