Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/149478
DC FieldValueLanguage
dc.contributor.authorTomašević, Darianen_US
dc.contributor.authorŠpacapan, Blažen_US
dc.contributor.authorPerušić, Anien_US
dc.contributor.authorPinčić, Domagojen_US
dc.contributor.authorMeden, Blažen_US
dc.contributor.authorFreire Obregón, David Sebastiánen_US
dc.contributor.authorEmeršič, Žigaen_US
dc.contributor.authorŠtruc, Vitomiren_US
dc.contributor.authorPeer, Peteren_US
dc.contributor.authorSušanj, Diegoen_US
dc.date.accessioned2025-10-07T11:50:21Z-
dc.date.available2025-10-07T11:50:21Z-
dc.date.issued2025en_US
dc.identifier.isbn979-8-3315-2487-6en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/149478-
dc.description.abstractPerson identification systems based on biometric modalities, such as hand images, require extensive and diverse datasets for effective training. However, real-world datasets are often limited in size and variability, leading to poor generalization, while strict privacy regulations constrain their sharing and use. To address these issues, we introduce the SynPalms framework, an approach for generating diverse palmar-side hand images of novel synthetic identities achieved with identity mixing during sampling. We investigate the impact of synthetic data on a ResNet50-based identification system by comparing the classification accuracy obtained when training with either realworld or synthetic images, as well as when utilizing both real and synthetic data. Our experiments demonstrate the trade-off between classification accuracy and subject privacy, highlighting the potential of synthetic data for training biometric identification systems in a privacy-preserving manner.en_US
dc.languageengen_US
dc.publisherIEEEXPLOREen_US
dc.subject2405 Biometríaen_US
dc.titleSynPalms: Palm Identification with Synthetic Dataen_US
dc.typeconference_paperen_US
dc.relation.conference16th International Conference on Ubiquitous and Future Networks (ICUFN 2025)en_US
dc.identifier.doi10.1109/ICUFN65838.2025.11169785en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.event.eventsstartdate08-07-2025-
crisitem.event.eventsenddate11-07-2025-
Appears in Collections:Actas de congresos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.