Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/149078
DC FieldValueLanguage
dc.contributor.authorGuerra Yánez, Carlosen_US
dc.contributor.authorMederos Barrera, Antonio Ramónen_US
dc.contributor.authorGhassemlooy, Zabihen_US
dc.contributor.authorZvanovec ,Stanislaven_US
dc.date.accessioned2025-09-30T06:17:38Z-
dc.date.available2025-09-30T06:17:38Z-
dc.date.issued2025en_US
dc.identifier.isbn9798331508982en_US
dc.identifier.issn1095-2055en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/149078-
dc.description.abstractSemantic communication subverts classical communication techniques by changing the focus on the preservation of meaning rather than on correctly transmitting logical bits. This is achieved by implementing a semantic encoder/decoder pair that operates at a higher level of abstraction and takes into account the nature of the source and destination, as well as their shared knowledge. One approach for the implementation of semantic encoder/decoder pairs is the use of artificial neural networks, and in particular, variational autoencoders. In this work, we propose the use of hierarchical quadrature amplitude modulation to improve the perceived quality of data in a semantic communication link using a variational autoencoder. We show that the use of the hierarchical modulation consistently improves the performance of the semantic communication link in terms of the SSIM under noisy channel scenarios, even achieving the overcoming of noise for signal-to-noise ratio values above 10 dB.en_US
dc.languageengen_US
dc.sourceProceedings - International Conference on Computer Communications and Networks, ICCCN[ISSN 1095-2055], (Enero 2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherArtificial Neural Networken_US
dc.subject.otherAuto-Encoderen_US
dc.subject.otherHierarchical Modulationen_US
dc.subject.otherSemantic Communicationen_US
dc.titleImproving Image Transmission with VAE-based Semantic Communication Using HQAMen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference34th International Conference on Computer Communications and Networks (ICCCN 2025)en_US
dc.identifier.doi10.1109/ICCCN65249.2025.11133932en_US
dc.identifier.scopus105016255383-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57315214300-
dc.contributor.authorscopusid57220806560-
dc.contributor.authorscopusid7004547192-
dc.contributor.authorscopusid8346275300-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2025en_US
dc.identifier.conferenceidevents156041-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.orcid0000-0003-1680-0726-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameGuerra Yánez,Carlos-
crisitem.author.fullNameMederos Barrera, Antonio Ramón-
crisitem.author.fullNameZvanovec ,Stanislav-
Appears in Collections:Actas de congresos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.