Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/148748
Título: | VIGIA-E: Density-Aware Patch Selection for Edge-Based Small Object Detection with PTZ Cameras | Autores/as: | Suárez Ramírez, Jonay Sánchez Cordero, Kiara Monzón López, Nelson Manuel |
Clasificación UNESCO: | 120304 Inteligencia artificial | Fecha de publicación: | 2025 | Editor/a: | Springer | Proyectos: | "A la ULPGC para análisis matemático de imágenes por CTIM" Estrategias de IA para la gestión inteligente del espacio marítimo y litoral del marco de planificación del espacio marítimo (o POEM) |
Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 21st International Conference in Computer Analysis of Images and Patterns (CAIP 2025) | Resumen: | We present VIGIA-E(Vision-based Inference for Guided Interest Attention on Edge devices), a lightweight object detection strategy for online surveillance in wide-area scenes using resource-constrained edge hardware. Designed for typical surveillance settings, such as public spaces or coastal infrastructures monitored by drones or elevated cameras, it addresses the challenge of detecting small, distant objects caused by perspective and scale. The method adopts a two-stage pipeline: a global low-resolution pass followed by selective high-resolution inference over dense regions identified via a grid-based estimator. This strategy reduces redundant computation while preserving detection accuracy, enabling efficient deployment on embedded platforms. Unlike conventional multi-inference approaches, VIGIA-E brings online feasibility to density-driven small object detection on edge systems, a crucial requirement for modern smart surveillance. We evaluate VIGIA-E on two complementary datasets: the domain-specific Anfi dataset and the VisDrone benchmark. In both cases, it achieves favorable trade-offs between accuracy and computational cost compared to representative multi-inference baselines. Additionally, VIGIA-E has been deployed in a real-world coastal surveillance system, demonstrating operational viability. While representing an initial iteration of our framework, it establishes a solid foundation for more advanced systems under development. | URI: | https://accedacris.ulpgc.es/jspui/handle/10553/148748 | ISBN: | 978-3-032-04967-4 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-032-04968-1_23 |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.