Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/147258
Título: Semantic Segmentation for Coastal Monitoring: Region Extraction and Overtopping Detection
Autores/as: Sanfiel Reyes, Fernando 
Suárez Ramírez, Jonay 
Alemán Flores, Miguel 
Monzón López, Nelson Manuel 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Deep Learning
Semantic Segmentation
Coastal dynamics
Wave overtopping
Intertidal zone
Fecha de publicación: 2025
Editor/a: Springer 
Proyectos: Detección precisa mediante Inteligencia Artificial deeventos de interés en escenas de playa, costa y litoral. 
Estrategias de IA para la gestión inteligente del espacio marítimo y litoral del marco de planificación del espacio marítimo (o POEM)
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 21th. International Conference Computer Analysis of Images and Patterns (CAIP 2025),
Resumen: This work presents a method for analyzing coastal areas to extract regions of interest and identify significant events near the shore, using semantic segmentation adapted to these environments. The segmentation approach is applied to label all pixels in an image according to a predefined set of classes. Two additional classes—namely, foam and wet sand—are introduced to the typical categories used in coastal dynamics, allowing for more detailed differentiation of areas that are important for specific purposes. The resulting classifications are then analyzed, either individually or as a sequence of frames in a video, to detect the occurrence of relevant events, such as waves overtopping dikes and reaching pedestrian or vehicle areas, or to extract regions of interest, such as the intertidal zone. In particular, detecting overtopping involves selecting a critical region and monitoring when it is reached by the sea. On the other hand, extracting the intertidal zone implies processing sequences spanning several hours to track the sea’s temporal changes. With this approach and the additional classes, the proposed method enables more robust detection of overtopping events and more accurate delineation of the region between high and low tides.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/147258
ISBN: 978-3-032-04967-4
ISSN: 0302-9743
DOI: 10.1007/978-3-032-04968-1_15
Fuente: Computer Analysis of Images and Patterns. CAIP 2025. Lecture Notes in Computer Science, vol 15621, p. 174–185. (2025)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.