Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/147258
Título: | Semantic Segmentation for Coastal Monitoring: Region Extraction and Overtopping Detection | Autores/as: | Sanfiel Reyes, Fernando Suárez Ramírez, Jonay Alemán Flores, Miguel Monzón López, Nelson Manuel |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Deep Learning Semantic Segmentation Coastal dynamics Wave overtopping Intertidal zone |
Fecha de publicación: | 2025 | Editor/a: | Springer | Proyectos: | Detección precisa mediante Inteligencia Artificial deeventos de interés en escenas de playa, costa y litoral. Estrategias de IA para la gestión inteligente del espacio marítimo y litoral del marco de planificación del espacio marítimo (o POEM) |
Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 21th. International Conference Computer Analysis of Images and Patterns (CAIP 2025), | Resumen: | This work presents a method for analyzing coastal areas to extract regions of interest and identify significant events near the shore, using semantic segmentation adapted to these environments. The segmentation approach is applied to label all pixels in an image according to a predefined set of classes. Two additional classes—namely, foam and wet sand—are introduced to the typical categories used in coastal dynamics, allowing for more detailed differentiation of areas that are important for specific purposes. The resulting classifications are then analyzed, either individually or as a sequence of frames in a video, to detect the occurrence of relevant events, such as waves overtopping dikes and reaching pedestrian or vehicle areas, or to extract regions of interest, such as the intertidal zone. In particular, detecting overtopping involves selecting a critical region and monitoring when it is reached by the sea. On the other hand, extracting the intertidal zone implies processing sequences spanning several hours to track the sea’s temporal changes. With this approach and the additional classes, the proposed method enables more robust detection of overtopping events and more accurate delineation of the region between high and low tides. | URI: | https://accedacris.ulpgc.es/jspui/handle/10553/147258 | ISBN: | 978-3-032-04967-4 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-032-04968-1_15 | Fuente: | Computer Analysis of Images and Patterns. CAIP 2025. Lecture Notes in Computer Science, vol 15621, p. 174–185. (2025) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.