Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/147256
| Campo DC | Valor | idioma |
|---|---|---|
| dc.contributor.author | Martín, Óscar A. | en_US |
| dc.contributor.author | Sanchez, Javier | en_US |
| dc.date.accessioned | 2025-09-19T17:48:19Z | - |
| dc.date.available | 2025-09-19T17:48:19Z | - |
| dc.date.issued | 2025 | en_US |
| dc.identifier.issn | 2079-9292 | en_US |
| dc.identifier.uri | https://accedacris.ulpgc.es/jspui/handle/10553/147256 | - |
| dc.description.abstract | Using neural networks has become the standard technique for medical diagnostics, especially in cancer detection and classification. This work evaluates the performance of Vision Transformer architectures, including Swin Transformer and MaxViT, for several datasets of magnetic resonance imaging (MRI) and computed tomography (CT) scans. We used three training sets of images with brain, lung, and kidney tumors. Each dataset included different classification labels, from brain gliomas and meningiomas to benign and malignant lung conditions and kidney anomalies such as cysts and cancers. This work aims to analyze the behavior of the neural networks in each dataset and the benefits of combining different image modalities and tumor classes. We designed several experiments by fine-tuning the models on combined and individual datasets. The results revealed that the Swin Transformer achieved the highest accuracy, with an average of 99.0% on single datasets and reaching 99.43% on the combined dataset. This research highlights the adaptability of Transformer-based models to various human organs and image modalities. The main contribution lies in evaluating multiple ViT architectures across multi-organ tumor datasets, demonstrating their generalization to multi-organ classification. Integrating these models across diverse datasets could mark a significant advance in precision medicine, paving the way for more efficient healthcare solutions. | en_US |
| dc.language | eng | en_US |
| dc.relation.ispartof | Electronics (Switzerland) | en_US |
| dc.source | Electronics, v. 14(15), 2025 | en_US |
| dc.subject | 221118 Resonancia magnética | en_US |
| dc.subject.other | Brain tumor | en_US |
| dc.subject.other | Lung tumor | en_US |
| dc.subject.other | Kidney tumor | en_US |
| dc.subject.other | Neural networks | en_US |
| dc.subject.other | Vision Transformer | en_US |
| dc.subject.other | Swin Transformer | en_US |
| dc.subject.other | MaxViT | en_US |
| dc.title | Evaluation of Vision Transformers for Multi-Organ Tumor Classification Using MRI and CT Imaging | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.3390/electronics14152976 | en_US |
| dc.identifier.issue | 15 | - |
| dc.relation.volume | 14 | en_US |
| dc.investigacion | Ingeniería y Arquitectura | en_US |
| dc.type2 | Artículo | en_US |
| dc.description.numberofpages | 23 | en_US |
| dc.utils.revision | Sí | en_US |
| dc.identifier.ulpgc | Sí | en_US |
| dc.contributor.buulpgc | BU-INF | en_US |
| dc.description.sjr | 0,644 | |
| dc.description.jcr | 2,6 | |
| dc.description.sjrq | Q2 | |
| dc.description.jcrq | Q2 | |
| dc.description.scie | SCIE | |
| dc.description.miaricds | 10,5 | |
| item.grantfulltext | open | - |
| item.fulltext | Con texto completo | - |
| crisitem.author.dept | GIR IUCES: Centro de Tecnologías de la Imagen | - |
| crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
| crisitem.author.dept | Departamento de Informática y Sistemas | - |
| crisitem.author.orcid | 0000-0001-8514-4350 | - |
| crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
| crisitem.author.fullName | Sánchez Pérez, Javier | - |
| Colección: | Artículos | |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.