Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/147256
DC FieldValueLanguage
dc.contributor.authorMartín, Óscar A.en_US
dc.contributor.authorSanchez, Javieren_US
dc.date.accessioned2025-09-19T17:48:19Z-
dc.date.available2025-09-19T17:48:19Z-
dc.date.issued2025en_US
dc.identifier.issn2079-9292en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/147256-
dc.description.abstractUsing neural networks has become the standard technique for medical diagnostics, especially in cancer detection and classification. This work evaluates the performance of Vision Transformer architectures, including Swin Transformer and MaxViT, for several datasets of magnetic resonance imaging (MRI) and computed tomography (CT) scans. We used three training sets of images with brain, lung, and kidney tumors. Each dataset included different classification labels, from brain gliomas and meningiomas to benign and malignant lung conditions and kidney anomalies such as cysts and cancers. This work aims to analyze the behavior of the neural networks in each dataset and the benefits of combining different image modalities and tumor classes. We designed several experiments by fine-tuning the models on combined and individual datasets. The results revealed that the Swin Transformer achieved the highest accuracy, with an average of 99.0% on single datasets and reaching 99.43% on the combined dataset. This research highlights the adaptability of Transformer-based models to various human organs and image modalities. The main contribution lies in evaluating multiple ViT architectures across multi-organ tumor datasets, demonstrating their generalization to multi-organ classification. Integrating these models across diverse datasets could mark a significant advance in precision medicine, paving the way for more efficient healthcare solutions.en_US
dc.languageengen_US
dc.relation.ispartofElectronics (Switzerland)en_US
dc.sourceElectronics, v. 14(15), 2025en_US
dc.subject221118 Resonancia magnéticaen_US
dc.subject.otherBrain tumoren_US
dc.subject.otherLung tumoren_US
dc.subject.otherKidney tumoren_US
dc.subject.otherNeural networksen_US
dc.subject.otherVision Transformeren_US
dc.subject.otherSwin Transformeren_US
dc.subject.otherMaxViTen_US
dc.titleEvaluation of Vision Transformers for Multi-Organ Tumor Classification Using MRI and CT Imagingen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/electronics14152976en_US
dc.identifier.issue15-
dc.relation.volume14en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages23en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,644
dc.description.jcr2,6
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,5
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-8514-4350-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Pérez, Javier-
Appears in Collections:Artículos
Adobe PDF (3,51 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.