Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/146524
DC FieldValueLanguage
dc.contributor.authorÁlvarez De Linera-Alperi, Martaen_US
dc.contributor.authorSismono, Fergioen_US
dc.contributor.authorSluydts, Morganaen_US
dc.contributor.authorDe Foer, Berten_US
dc.contributor.authorManrique-Huarte, Raquelen_US
dc.contributor.authorRamos Macías, Ángel Manuelen_US
dc.contributor.authorManrique, Manuelen_US
dc.contributor.authorZarowski, Andrzejen_US
dc.date.accessioned2025-09-08T10:00:21Z-
dc.date.available2025-09-08T10:00:21Z-
dc.date.issued2025en_US
dc.identifier.issn1420-3030en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/146524-
dc.description.abstractIntroduction: Balance disorders are a major challenge today as they greatly affect people's quality of life. Although medical treatment and vestibular rehabilitation are insufficient in many cases, significant improvements in the treatment of vestibular pathologies have been achieved in recent decades. New trends toward minimally invasive procedures have led to the study of direct treatment at the vestibular level, such as the use of vestibular implants. Great efforts have been made to acquire a thorough knowledge of these organs. However, the surgical anatomy and exact spatial orientation of the vestibular end organs remain partially unknown. The aim of this study was to evaluate in three-dimensional (3D) reconstructions the feasibility of new minimally traumatic surgical approaches to the vestibule. Methods: In order to plan and explore new surgical approaches to the vestibular end organs, a methodology based on 3D models of the inner ear has been developed. This methodology is tested on human temporal bones treated with vestibular implants to analyze possible new minimally traumatic approaches to the vestibular system. Pre- and post-implantation cone-beam computed tomography (CBCT) images were acquired. Image segmentation of the vestibular end organs was performed on the pre-implantation CBCT scan. An already validated, freely and openly available anatomical atlas of the inner ear, IE-Map, was used as a reference template for the anatomy. Alignment of the IE-Map with the CBCT images was achieved using the MATLAB image processing toolbox. Interactive 3D models were visualized with the non-commercial version of Dragonfly 2021.1 software. Results: Image segmentation of the vestibular end organs and their 3D reconstructions were successfully performed in all cases. The 3D images showed reasonably realistic estimation of the location of the electrode within the vestibule and their relationships with respect to the different ampullary and otolithic receptors. Conclusion: 3D reconstruction by segmentation of the inner ear with superposition of CT images and an anatomical model is feasible and offers valuable morphological insight into the complex anatomy of the inner ear. This technique is particularly useful for exploring potential new surgical approaches to access the vestibule and shows promising results in the context of future local drug delivery and/or direct electrical stimulation at the vestibular level. Three such approaches were proposed and preliminarily assessed.en_US
dc.languageengen_US
dc.relation.ispartofAudiology and Neurotology Extraen_US
dc.sourceAudiology and Neurotology [ISSN 1420-3030], (Enero 2025)en_US
dc.subject32 Ciencias médicasen_US
dc.subject3201 Ciencias clínicasen_US
dc.subject3314 Tecnología médicaen_US
dc.subject.other3D Reconstructionsen_US
dc.subject.otherCochleovestibular Implanten_US
dc.subject.otherSurgical Approachen_US
dc.subject.otherVestibular End Organsen_US
dc.subject.otherVestibulopathyen_US
dc.titleAtraumatic Surgical Approaches to the Vestibular Labyrinth Allowing for Drug Delivery, Cochleovestibular Implants, and Other New Surgical Applicationsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1159/000547032en_US
dc.identifier.scopus105014775968-
dc.contributor.orcid0000-0003-3234-4791-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-8811-0655-
dc.contributor.authorscopusid57212382551-
dc.contributor.authorscopusid57221544005-
dc.contributor.authorscopusid57211063780-
dc.contributor.authorscopusid6603631930-
dc.contributor.authorscopusid36953260800-
dc.contributor.authorscopusid6701550535-
dc.contributor.authorscopusid7006085785-
dc.contributor.authorscopusid6603215762-
dc.identifier.eissn1421-9700-
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.esciESCI
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Ingeniería biomédica aplicada a estimulación neural y sensorial-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.orcid0000-0002-4709-5559-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameRamos Macías, Ángel Manuel-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.