Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/146199
Título: | Curve-Based Infill Pattern Optimization for 3D Printed Polymeric Scaffolds for Trabecular Bone Applications | Autores/as: | Vega Rodríguez, Gisela Del Carmen Paz Hernández, Rubén Monzón Verona, Mario Domingo Donate González, Ricardo Gleadall, Andrew |
Clasificación UNESCO: | 3313 Tecnología e ingeniería mecánicas 3314 Tecnología médica |
Palabras clave: | Optimization Scaffold Tissue engineering Additive manufacturing Modeling, et al. |
Fecha de publicación: | 2025 | Proyectos: | Nuevos Scaffolds Piezoeléctricos de Compuestos Nanoestructurados Para la Regeneración Ósea Mediante Fabricación Aditiva | Publicación seriada: | Materials | Resumen: | Additive manufacturing technology, specifically material extrusion, offers great potential for scaffold manufacturing in tissue engineering. This study presents a novel methodology for the design and optimization of 3D printed polymeric scaffolds to enhance cell viability, thereby promoting improved cell proliferation for tissue engineering applications. Different infill patterns, including gyroid, parallel sinusoidal, and symmetric sinusoidal, were evaluated to determine their impact on cell proliferation and tissue regeneration. To overcome the limitations of existing slicer software, a novel open-source software called FullControl GCode Designer was utilized, enabling the creation of customized infill patterns without restrictions. VOLCO software was employed to generate voxelized 3D models of the scaffolds, simulating the material extrusion process. Finite element analysis was conducted using Abaqus software to evaluate the mechanical properties of the different designs. Additionally, new scripts were developed to evaluate the interconnectivity and pore size of the voxelized models. A factorial design of experiments and a genetic algorithm (combined with Kriging metamodels) were applied to identify the optimal configuration based on optimization criteria (keeping the mechanical stiffness and pore size within the recommended values for trabecular bone and maximizing the surface and interconnectivity). Biological testing was conducted on polylactic acid scaffolds to preliminarily validate the effectiveness of the modeling and optimization methodologies in this regard. The results demonstrated the agreement between the optimization methodology and the biological test since the optimum in both cases was a symmetric sinusoidal pattern design with a configuration resulting in a structure with 53.08% porosity and an equivalent pore size of 584 µm. Therefore, this outcome validates the proposed methodologies, emphasizing the role of pore surface area and interconnectivity in supporting cell proliferation. Overall, this research contributes to the advancement of AM technology in tissue engineering and paves the way for further optimization studies in scaffold design. | URI: | https://accedacris.ulpgc.es/handle/10553/146199 | ISSN: | 1996-1944 | DOI: | 10.3390/ma18174055 | Fuente: | Materials [ISSN 1996-1944], v, 18, (Agosto 2025) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.