Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/145999
Title: Seasonal Changes of Size Spectra of the Benguela Offshore Mesopelagic Ecosystem Compartment in Relation to Primary Production
Authors: Fock, Heino O.
Andresen, Henrike
Pérez, Javier Díaz
Dudeck, Tim
Figueiredo, Gabriela
Frédou, Thierry
Ghebrehiwet, Dawit Y.
González-García, Cristina
Landeira, José M. 
Lira, Simone
Marañón, Emilio
Eduardo, Leandro Nole
Schwamborn, Ralf
UNESCO Clasification: 251001 Oceanografía biológica
251005 Zoología marina
Keywords: Benguela Upwelling System
Mesopelagic Fishes
Primary Production
Size Spectrum Analysis
Issue Date: 2025
Journal: Marine Ecology 
Abstract: Seasonal differences in marine size spectra of micronekton at the shelf-ocean interface of the northern (NBUS) and southern Benguela upwelling system (SBUS) in Feb–Mar 2019 and Sep–Oct 2021 were analysed for mesopelagic fishes and total micronekton, the latter also including invertebrates. A resource dependent population model based on the metabolic theory of ecology (MTE) containing resource and temperature terms and a term representing a transfer function was applied to test three different types of size spectra slope estimates. The model fitted best with linear slopes calculated of log-binned averaged community biomass (LBNbiom method), while maximum likelihood and quantile regression estimates proved less effective. The best model for total micronekton contained significant effects both for resource term and transfer function, but not for temperature, and was 3.6 times more effective explaining the data than a non-MTE model. Normalized biomass size spectra (NBSS) slopes of the total micronekton were in the theoretical range between −0.80 and −1.37, where the near-equilibrium slope of −0.80 was obtained for the SBUS under oligotrophic conditions in 2021. Seasonally, NBSS slopes were steeper in the NBUS than in the SBUS. The slopes for the fishes' subcomponents ranged from −0.23 to −0.92, where values > −0.75 fall outside the theoretical range, suggesting that selecting taxonomic subsets for size spectrum analysis is problematic. The importance of the productivity regime shaping the biomass spectrum directly through the resource level and indirectly through the transfer function is highlighted. For mesopelagic fishes, generation time and fecundity are applied to explain slopes > −0.75.
URI: https://accedacris.ulpgc.es/handle/10553/145999
ISSN: 0173-9565
DOI: 10.1111/maec.70040
Source: Marine Ecology [ISSN 0173-9565],v. 46 (4), (Julio 2025)
Appears in Collections:Artículos
Adobe PDF (1,17 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.