Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/145727
Título: Dynamic bandwidth allocation with machine learning in dense WiFi network
Autores/as: Alvarado Jaimes, Ricardo 
Opina, Bayron
Tellez, Johan
Triana, Vivian
Clasificación UNESCO: 3325 Tecnología de las telecomunicaciones
Palabras clave: Load Balancing
Bandwidth Efficiency
Traffic Redistribution
Wifi Networks
Fecha de publicación: 2025
Publicación seriada: Facets 
Resumen: Efficient load balancing is a fundamental aspect within a densely populated Wireless Fidelity (WiFi) network, particularly when the goal is to evenly distribute bandwidth and regulate Internet usage. The distribution of network traffic for load balancing can be achieved by utilizing quality of service protocols and access control lists or filters. This document introduces the application of a machine learning-based prediction model to outline time intervals of congestion in a densely populated WiFi network employing dynamic load balancing. Historical data related to associated users and WiFi network bandwidth serve as key indicators to assess the network's congestion level. Dynamic load balancing is executed by allocating bandwidth to priority traffic based on observed congestion levels. To implement load balancing, access control lists based on time and quality of service parameters are configured within the network devices.The experimental findings reveal a notable improvement in the performance of a WiFi network through the implementation of our dynamic load balancing approach, resulting in a 50% reduction in lost packets. This innovative method allows for the definition of priority traffic types during different congestion periods.
URI: https://accedacris.ulpgc.es/handle/10553/145727
ISSN: 2371-1671
DOI: 10.1139/facets-2024-0128
Fuente: Facets [ISSN 2371-1671], v. 10, (Julio 2025)
Colección:Artículos
Adobe PDF (886,53 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.