Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/145727
Campo DC Valoridioma
dc.contributor.authorAlvarado Jaimes, Ricardoen_US
dc.contributor.authorOpina, Bayronen_US
dc.contributor.authorTellez, Johanen_US
dc.contributor.authorTriana, Vivianen_US
dc.date.accessioned2025-08-26T12:11:16Z-
dc.date.available2025-08-26T12:11:16Z-
dc.date.issued2025en_US
dc.identifier.issn2371-1671en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/145727-
dc.description.abstractEfficient load balancing is a fundamental aspect within a densely populated Wireless Fidelity (WiFi) network, particularly when the goal is to evenly distribute bandwidth and regulate Internet usage. The distribution of network traffic for load balancing can be achieved by utilizing quality of service protocols and access control lists or filters. This document introduces the application of a machine learning-based prediction model to outline time intervals of congestion in a densely populated WiFi network employing dynamic load balancing. Historical data related to associated users and WiFi network bandwidth serve as key indicators to assess the network's congestion level. Dynamic load balancing is executed by allocating bandwidth to priority traffic based on observed congestion levels. To implement load balancing, access control lists based on time and quality of service parameters are configured within the network devices.The experimental findings reveal a notable improvement in the performance of a WiFi network through the implementation of our dynamic load balancing approach, resulting in a 50% reduction in lost packets. This innovative method allows for the definition of priority traffic types during different congestion periods.en_US
dc.languageengen_US
dc.relation.ispartofFacetsen_US
dc.sourceFacets [ISSN 2371-1671], v. 10, (Julio 2025)en_US
dc.subject3325 Tecnología de las telecomunicacionesen_US
dc.subject.otherLoad Balancingen_US
dc.subject.otherBandwidth Efficiencyen_US
dc.subject.otherTraffic Redistributionen_US
dc.subject.otherWifi Networksen_US
dc.titleDynamic bandwidth allocation with machine learning in dense WiFi networken_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1139/facets-2024-0128en_US
dc.identifier.scopus105012552846-
dc.identifier.isi001540603400001-
dc.contributor.orcid0000-0003-3096-2174-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid59137645600-
dc.contributor.authorscopusid60029311000-
dc.contributor.authorscopusid60028761900-
dc.contributor.authorscopusid60028914600-
dc.identifier.eissn2371-1671-
dc.relation.volume10en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages9en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Alvarado, R-
dc.contributor.wosstandardWOS:Opina, B-
dc.contributor.wosstandardWOS:Tellez, J-
dc.contributor.wosstandardWOS:Triana, V-
dc.date.coverdateJulio 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,847
dc.description.jcr2,9
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.esciESCI
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.fullNameAlvarado Jaimes, Ricardo-
Colección:Artículos
Adobe PDF (886,53 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.