Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/144493
Campo DC Valoridioma
dc.contributor.authorSuárez Ramírez, Jonayen_US
dc.contributor.authorSantana Cedrés, Daniel Elíasen_US
dc.contributor.authorMonzón López, Nelson Manuelen_US
dc.date.accessioned2025-08-05T16:34:46Z-
dc.date.available2025-08-05T16:34:46Z-
dc.date.issued2025en_US
dc.identifier.issn0031-3203en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/144493-
dc.description.abstractDetecting small objects in large-scale scenes remains a fundamental challenge in object detection, primarily due to scale variation, occlusion, and limited resolution. In order to contribute in this research topic, we propose Density Aided Hyper Inference (DAHI), a lightweight and detector-agnostic framework that enhances detection performance through a structured, three-stage inference process. DAHI combines: (i) Region Density Estimation (RDE), which identifies areas likely to contain overlooked objects; (ii) Density-Aided Crop Selection (DACS), which efficiently selects high-density, low-overlap regions for re-inference; and (iii) Crop Margin Aware NonMaximum Suppression (CMA-NMS), which merges detections from full-image and region-based inferences while mitigating boundary-related errors. DAHI requires no retraining and integrates seamlessly with standard object detectors. Experiments on several aerial and driving detection benchmarks demonstrate improved detection quality and runtime efficiency compared to existing multi-inference approaches, while introducing reduced computational overhead. These results support the use of DAHI as an effective and practical enhancement for small object detection in complex visual scenes.en_US
dc.languageengen_US
dc.relationDetección precisa mediante Inteligencia Artificial deeventos de interés en escenas de playa, costa y litoral.en_US
dc.relation.ispartofPattern Recognitionen_US
dc.sourcePattern Recognition [ISSN 031-3203], vol. 141, parte B, (2025)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherDeep learningen_US
dc.subject.otherSurveillanceen_US
dc.subject.otherSmall object detectionen_US
dc.subject.otherSliced inferenceen_US
dc.subject.otherVisDroneen_US
dc.subject.otherUAVDTen_US
dc.subject.otherSODA-Den_US
dc.titleDAHI: a fast and efficient density aided hyper inference technique for large scene object detectionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.patcog.2025.112228en_US
dc.relation.volume171en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages13en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr2,732
dc.description.jcr7,5
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2032-5649-
crisitem.author.orcid0000-0003-0571-9068-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSuárez Ramírez, Jonay-
crisitem.author.fullNameSantana Cedrés, Daniel Elías-
crisitem.author.fullNameMonzón López, Nelson Manuel-
crisitem.project.principalinvestigatorTrujillo Pino, Agustín Rafael-
Colección:Artículos
Adobe PDF (13,86 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.