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 a b s t r a c t

Detecting small objects in large-scale scenes remains a fundamental challenge in object detection, primarily due 
to scale variation, occlusion, and limited resolution. In order to contribute in this research topic, we propose 
Density Aided Hyper Inference (DAHI), a lightweight and detector-agnostic framework that enhances detection 
performance through a structured, three-stage inference process. DAHI combines: (i) Region Density Estimation 
(RDE), which identifies areas likely to contain overlooked objects; (ii) Density-Aided Crop Selection (DACS), 
which efficiently selects high-density, low-overlap regions for re-inference; and (iii) Crop Margin Aware Non-
Maximum Suppression (CMA-NMS), which merges detections from full-image and region-based inferences while 
mitigating boundary-related errors. DAHI requires no retraining and integrates seamlessly with standard ob-
ject detectors. Experiments on several aerial and driving detection benchmarks demonstrate improved detection 
quality and runtime efficiency compared to existing multi-inference approaches, while introducing reduced com-
putational overhead. These results support the use of DAHI as an effective and practical enhancement for small 
object detection in complex visual scenes.

1.  Introduction

Object detection has evolved from hand-crafted feature pipelines 
[1,2] to deep learning models such as R-CNN [3], SSD [4], YOLO [5], 
and RetinaNet [6]. These advances have significantly improved detec-
tion speed and accuracy across a wide range of visual tasks. However, 
performance varies substantially depending on object size and image 
context. In particular, small object detection remains a major challenge 
due to their limited resolution, ambiguous features, and greater sensi-
tivity to occlusion and scale variation.

In aerial imagery and wide-area monitoring, distant objects are typ-
ically small, often overlapping or partially occluded, making them dif-
ficult to detect with standard methods. Their low resolution and spatial 
proximity can lead to suppressed features and misclassifications, partic-
ularly in cluttered or high-density scenes. These challenges are common 
in applications where accurate detection of small targets is critical. High-
resolution inputs and complex scenes further increase computational 
demands, limiting the feasibility of many approaches in time-sensitive 
settings.

Multi-inference strategies [7,8] aim to improve recall by focusing on 
selected regions of interest. However, many rely on additional networks 
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[9,10], clustering-based selection [11,12], or expensive inference steps, 
which hinder scalability.

In this regard, we propose Density-Aided Hyper Inference (DAHI), a 
lightweight multi-inference technique to enhance small object detec-
tion. DAHI consists of: (i) Region Density Estimation (RDE), which 
scores object-dense areas; (ii) Density-Aided Crop Selection (DACS), 
which selects compact, low-overlapping crops; and (iii) Crop Mar-
gin Aware NMS (CMA-NMS), which merges detections while reducing 
boundary artifacts. The rationale behind these components is to address 
key limitations: RDE avoids exhaustive search, DACS improves selec-
tion efficiency, and CMA-NMS suppresses boundary-induced false posi-
tives. Owing to its fully modular architecture, each DAHI component can 
be embedded independently into any multi-inference pipeline. More-
over, it seamlessly integrates with any object detector—single-stage, 
two-stage, or transformer-based–and consistently enhances detection
performance.

We evaluate DAHI on VisDrone2019-Det [13], UAVDT [14], and 
SODA-D [15], covering high-altitude urban monitoring, dense pedes-
trian scenes, and varied driving conditions to ensure a comprehensive 
and generalizable evaluation. The experimental results show that the 
proposal substantially reduces region inferences and overall inference 
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latency across all evaluated detectors without compromising AP50/AP75
accuracy, yielding consistent accuracy—speed trade-offs with an im-
portant reduced overhead. Its plug-and-play design also enables de-
ployment in real-time applications without auxiliary networks or
retraining.

The remainder of this paper is organized as follows: Section 2 re-
views related work. Section 3 presents our method. Section 4 reports 
experimental results. Section 5 concludes the paper.

2.  Related works

Deep convolutional networks have greatly advanced object detec-
tion, typically divided into two-stage models (e.g., R-CNN [3,16,17]) 
that propose regions before classification, and one-stage models (e.g., 
YOLO [5,18,19]) that predict boxes and classes jointly. RetinaNet [6] ad-
dressed class imbalance with Focal Loss; FSAF [20] introduced anchor-
free detection with adaptive feature selection; and GFL [21] unified clas-
sification and localization with quality-aware loss. After the irruption of 
Transformers in Computer Vision, DETR [22] reframed detection as a set 
prediction task using a transformer-based encoder-decoder, eliminating 
the need for anchor boxes and non-maximum suppression. However, 
DETR suffers from slow convergence and limited performance on small 
objects. To address these issues, several extensions with improved accu-
racy on Small Object Detection, as studied in [23], have been proposed 
including Deformable DETR [24] with multi-scale deformable atten-
tion, DAB-DETR [25] with dynamic anchor boxes, and DINO DETR[26], 
which improves training efficiency and accuracy through denoising 
queries and contrastive learning.

Detecting small objects is notably more difficult than detecting 
medium or large ones [27]. Their small size leads to poor feature repre-
sentation, especially after downsampling. Relevant features may be lost 
in early layers, and their influence on the final feature maps is often 
minimal. Additionally, small objects frequently appear in dense clusters 
or under occlusion, increasing the risk of aggregation or suppression 
during post-processing. Aerial imagery introduces further challenges: 
objects show wide scale variation both within and across classes, and 
backgrounds are more cluttered than in natural images. Recent surveys 
[15,28] classify small object detection strategies into sample-oriented, 
scale-aware, context-modeling, attention-based, feature-imitation, and 
focus-and-detect methods. Our approach aligns with the latter, which 
we refer to as multi-inference strategies.

These methods typically apply detection to multiple image crops 
and then merge the results. Common baselines include fixed-size sliding 
windows or uniform slicing [7,8]. Some use random crops for training 
[7], others tile the image uniformly [8]. Several approaches introduce 
a region search step to guide crop selection. Yang et al. [9] proposed 
clustering-based crop selection using two subnetworks. Zhang et al. [29] 
introduced a difficult region estimation network to guide cropping dur-
ing training. Reinforcement learning has also been explored: Fang et al. 
[30] use spatial transformation and early convolution, while Xu et al. 
[31] train a dedicated crop selection policy.

Other methods rely on region density or object clustering. Focus-
and-Detect [32] pre-generates clusters using a Gaussian Mixture Model 
and uses a two-stage pipeline for detection and fusion. Li et al. [10] 
estimate density maps from ground truth to guide zoom-in regions. 
CRENet [11] uses MeanShift [33] clustering over detected boxes. GLSAN 
[12] applies KMeans on detections and enhances the cropped areas 
with super-resolution. Meethal et al. [34] define a new class to rep-
resent clusters and train the detector to recognize both objects and crop
targets.

Unlike prior methods, DAHI requires no extra training or auxiliary 
networks. It uses base detector outputs for efficient region selection and 
fusion. CMA-NMS further improves consistency in multi-inference se-
tups by addressing crop-boundary artifacts.

3.  Density aided hyper inference

In this section, we introduce Density Aided Hyper Inference (DAHI), 
a lightweight framework that improves small object detection at the 
inference stage. First, we analyze the spatial distribution of objects 
in aerial datasets revealing a consistent clustering pattern that moti-
vates our density-guided strategy. Then, we describe the training setup 
(Training Stage), which uses a slicing-based scheme to ensure robust-
ness across different image scales. The following subsections detail the 
inference pipeline: an initial global pass is refined using Region Density 
Estimation (RDE), which scores local crops; Density-Aided Crop Selec-
tion (DACS), which selects the most informative regions for reinference; 
and Crop Margin Aware NMS (CMA-NMS), which merges results while 
handling border artifacts. Finally, we provide a formal summary of the 
overall DAHI inference process, highlighting how these components in-
teract efficiently within the detection pipeline. To provide a comprehen-
sive perspective, Fig. 1 shows the general scheme of the proposal.

Fig. 1. General overview of the inference stage in our method. After a global pass, Region Density Estimation (RDE) is applied over randomly generated windows to 
estimate local density. Then, Density-Aided Crop Selection (DACS) selects high-density regions for re-inference. Final detections are obtained by fusing results using 
Crop Margin Aware NMS (CMA-NMS).
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Fig. 2. Comparison of local Chebyshev distance distributions for ground truth bounding boxes in VisDrone, UAVDT, SODA-D, and AITOD training sets. Distances 
are normalized; the threshold of 0.5 is marked, and the cumulative probability below this threshold is reported for each dataset.

3.1.  Motivation for density-based region selection

Understanding the spatial distribution of objects is critical for de-
signing effective strategies in small object detection, especially in dense 
or cluttered scenes. To this end, we analyze the arrangement of anno-
tated objects in four widely used aerial datasets: VisDrone [13], UAVDT 
[14], SODA-D [15], and AI-TOD [35]. These datasets encompass var-
ied environments, object densities, and resolutions, reflecting common 
conditions in real-world detection tasks. Fig. 2 shows the distribution of 
normalized Chebyshev distances1 to the 100 nearest neighbors for each 
ground truth box. The results reveal a strong tendency toward local ag-
gregation: 85% to 92% of instances lie within a normalized distance of 
0.5. This clustering suggests that, where one object is detected, others 
likely remain undetected nearby—often due to small size, occlusion, or 
feature suppression—which directly motivates our use of density-guided 
inference.

This analysis supports the design of DAHI and highlights the value of 
density-aware strategies in representative small object detection scenar-
ios. In this sense, we propose using a Region Density Estimation (RDE) 
module to identify high-density regions from initial detections, which 
are then prioritized for re-inference via Density-Aided Crop Selection 
(DACS).

3.2.  Training stage

Regarding the training stage, we adopt the Slicing Finetuning strat-
egy proposed in SAHI [7]. The pipeline includes a stochastic mecha-
nism that randomly chooses between two options: cropping the image 
or using it as-is, before resizing it to a fixed input size. Regardless of 
the choice, the resulting image is passed to the detector. Since full im-

1 We use Chebyshev distance as it reflects axis-aligned offset, matching grid-
based crop selection.

ages and cropped regions follow different object scale distributions, the 
model is trained to handle both simultaneously.

3.3.  Inference stage

The inference stage in DAHI is designed to address the limitations 
of standard detectors when dealing with small objects in large scenes. 
It follows a three-stage pipeline that builds upon an initial global pass. 
This first pass provides a coarse set of detections, which we use both 
to estimate local object density and to inform subsequent region selec-
tion. The assumption—supported by the previous dataset analysis (see 
Section 3.1)—is that the presence of one detection implies a high prob-
ability of additional nearby objects being overlooked due to small size, 
occlusion, or resolution loss.

We leverage this property through Region Density Estimation (RDE), 
which scores randomly sampled regions based on the density of initial 
detections. Then, Density-Aided Crop Selection (DACS) selects a sub-
set of high-density regions for re-inference. Finally, Crop Margin Aware 
Non-Maximum Suppression (CMA-NMS) merges results from all infer-
ences, accounting for crop boundaries and suppressing duplicate detec-
tions across regions. Fig. 1 provides an overview of this process.

3.4.  Region density estimation (RDE)

The identification of informative regions is addressed through Re-
gion Density Estimation (RDE), a lightweight mechanism that guides 
region selection during inference.

Following the initial global pass, a set of candidate regions is ran-
domly generated across the image, using crop dimensions consistent 
with the training stage. Both fixed-size crops and random aspect ratio 
(RAR) crops are considered, leading to two variants of our approach: 
DAHI-base and DAHI-RAR. Each candidate region is subsequently eval-
uated based on a density measure derived from the initial detections.
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The estimation of region density relies on filtering the detections ob-
tained from the global pass using a low confidence threshold 𝛽, where 
𝛽 ≤ 𝐶𝑇𝐻  and 𝐶𝑇𝐻  denotes the threshold applied to accept valid detec-
tions. This filtering step approximates the spatial distribution of objects 
across the scene. The density  of each candidate region is then esti-
mated as follows:

(𝑟𝑖,) =

∑

𝑏𝑗∈ (𝑟𝑖, 𝑏𝑗 )

𝐴(𝑟𝑖) ⋅ 𝜆
, (1)

(𝑟𝑖, 𝑏𝑗 ) =

{

| 𝑟𝑖 ∩ 𝑏𝑗 | ∕ | 𝑏𝑗 | if | 𝑟𝑖 ∩ 𝑏𝑗 | ∕ | 𝑏𝑗 | ≥ 0.5
0 otherwise.

, (2)

where 𝑟𝑖 denotes a candidate region,  is a set of detections bound-
ing boxes, 𝑏𝑗 the 𝑗-th detected box, and 𝐴(𝑟𝑖) the area of 𝑟𝑖. The con-
stant 𝜆 compensates for the disparity between the large area of 𝑟𝑖 and 
the typically small number of overlapping boxes. The function (𝑟𝑖, 𝑏𝑗 )
computes the fraction of 𝑏𝑗 ’s area covered by 𝑟𝑖, producing a normal-
ized value in [0, 1] (see Fig. 3). Contributions from boxes with less than 
50% overlap are discarded to mitigate false positives. The final density 
(𝑟𝑖,) aggregates the valid contributions and normalizes by 𝐴(𝑟𝑖) ⋅ 𝜆. 
This density estimation process forms the core of the Region Density Es-
timation (RDE) module, guiding the selection of regions for re-inference.

3.5.  Density aided crop selection (DACS)

We propose the Density Aided Crop Selection (DACS) algorithm (see 
1) to prioritize regions for re-inference by ranking randomly gener-
ated windows using density scores estimated by RDE. Inspired by Non-
Maximum Suppression (NMS), DACS sequentially selects high-density, 
minimally overlapping regions based on a predefined overlap threshold.

Unlike NMS, which filters redundant detections by confidence score, 
DACS selects regions for re-inference based on estimated object density. 
Its scoring derives from global inference, and selection is constrained 
by a maximum number of regions (𝑁ROI) and a coverage threshold 
(𝐶𝐷𝑇𝐻 ). This enables a balance between computational cost and recall 
across varying resolutions and object distributions.

Inference efficiency is controlled through two optional parameters. 
The maximum number of selected regions, 𝑁ROI, limits the method 
to 𝑁ROI + 1 inferences, ensuring bounded computational cost. The de-
tection coverage threshold, 𝐶𝐷𝑇𝐻 , enables early termination once a

Algorithm 1 Density Aided Crop Selection (DACS).
Require: Set of regions 𝑅, corresponding density scores 𝐷, and overlap 

threshold 𝜏
Optional: Maximum number of crops 𝑁ROI and coverage threshold 

𝐶𝐷TH
Ensure: Set of selected Regions of Interest 𝑅𝑂𝐼
1: Sort regions 𝑅 by 𝐷 in descending order
2: 𝑅𝑂𝐼 ← {}
3: while 𝑅 not empty ∧ |𝑅𝑂𝐼| < 𝑁ROI ∧ 𝐶𝐷TH > coverage from 𝑅𝑂𝐼
do

4:  Select region 𝑟1 with highest score from 𝑅
5:  Add 𝑟1 to 𝑅𝑂𝐼 and remove it from 𝑅
6:  for each 𝑟𝑖 in 𝑅 do
7:  Compute IoS between 𝑟1 and 𝑟𝑖
8:  if IoS(𝑟1, 𝑟𝑖) > 𝜏 then
9:  Remove 𝑟𝑖 from 𝑅
10:  end if
11:  end for
12: end while
13: return 𝑅𝑂𝐼

specified proportion of the initial estimated detections is covered by the 
selected crops. Both parameters can be applied independently or jointly, 
as analyzed in the experimental section. A third, mandatory stopping cri-
terion terminates the selection when no additional crops can be added 
without exceeding the overlap limit.

The selected regions are cropped, resized, and passed through the 
detector. Final detections are obtained by merging results from the full-
image inference and the selected regions. While standard NMS can be 
used for this fusion, we observed that handling region boundaries re-
quires additional care. Therefore, we introduce a boundary-aware re-
finement, detailed in the next section.

3.6.  Crop margin aware non-maximum suppression (CMA-NMS)

Multi-inference detection often results in partial duplicate detections 
near crop boundaries, especially when small objects are split across ad-
jacent regions. Standard NMS fails to suppress these duplicates when 
overlap is low, as in cases where one region captures only a fragment 

Fig. 3. Illustration of region density estimation. The blue rectangle is the candidate region (𝑟𝑖); green boxes are detections overlapping significantly with 𝑟𝑖, red 
boxes fall outside. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of an object. This effect is common in aerial imagery and motivates a 
more robust post-processing strategy for detection merging.

To address this, we introduce Crop Margin Aware Non-Maximum 
Suppression (CMA-NMS), a refinement of classical NMS designed to ac-
count for crop boundaries and misaligned partial detections. CMA-NMS 
evaluates the spatial relationship between boxes from different regions 
and applies a margin test ( , Eq. 3) to identify candidates that lie 
near crop borders and are thus prone to mislocalization. Specifically, the 
margin test  (𝑏𝑖, 𝐶𝑖) identifies bounding boxes whose coordinates fall 
within a 𝜃-pixel peripheral band of their corresponding crop 𝐶𝑖. That is, 
the test holds when 𝑏𝑖 is not fully contained within the interior region 
defined by [𝐶𝑥1

𝑖 + 𝜃, 𝐶𝑥2
𝑖 − 𝜃] × [𝐶𝑦1

𝑖 + 𝜃, 𝐶𝑦2
𝑖 − 𝜃]. This condition flags 

detections close to crop edges as potentially misaligned and eligible for 
special handling during suppression.

During post-processing, each selected box 𝑏𝑠 is compared against re-
maining candidates. If a candidate 𝑏𝑖 originates from a different crop 
and passes the margin test, it is considered a potential duplicate. In such 
cases, suppression is based on the Intersection over Smaller (IoS) using a 
stricter threshold 𝑡𝑀𝑇 . Otherwise, standard NMS applies using IoU with 
threshold 𝑡. The full procedure is detailed in Algorithm 2.

Fig. 4 illustrates this behavior. In the detailed view, the same object 
(a van) is partially detected in one region (red box) and fully detected 
in another (green box). The red box lies within the defined margin of 
Region 1, triggering   and leading to its suppression via IoS, despite 
limited overlap that would prevent removal under standard NMS.

 (𝑏𝑖, 𝐶𝑖) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

True if 𝑏𝑥1𝑖 ∉ [𝐶𝑥1
𝑖 + 𝜃, 𝐶𝑥2

𝑖 − 𝜃]
True if 𝑏𝑦1𝑖 ∉ [𝐶𝑦1

𝑖 + 𝜃, 𝐶𝑦2
𝑖 − 𝜃]

True if 𝑏𝑥2𝑖 ∉ [𝐶𝑥1
𝑖 + 𝜃, 𝐶𝑥2

𝑖 − 𝜃]
True if 𝑏𝑦2𝑖 ∉ [𝐶𝑦1

𝑖 + 𝜃, 𝐶𝑦2
𝑖 − 𝜃]

False otherwise

(3)

Together, RDE, DACS, and CMA-NMS form an integrated pipeline 
that improves small object detection by refining inference region selec-
tion and post-processing, while maintaining computational efficiency.

3.7.  DAHI inference process overview

In this section, we summarize the inference process of DAHI using 
a structured formulation aligned with the previously defined compo-
nents, namely: Region Density Estimation (RDE), Density-Aided Crop 
Selection (DACS), and Crop Margin Aware Non-Maximum Suppression 
(CMA-NMS).

Algorithm 2 Crop Margin Aware Non-Maximum Suppression (CMA-
NMS).
Require: Set of bounding boxes 𝐵, corresponding scores 𝑆 and crop of 

origin 𝐶, overlap threshold 𝑡, and margin test overlap threshold 𝑡𝑀𝑇
Ensure: Set of selected bounding boxes 𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
1: Sort the bounding boxes 𝐵 by their scores 𝑆 in descending order
2: 𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← {}
3: while 𝐵 is not empty do
4:  Pick the bounding box 𝑏𝑠 with the highest score from 𝐵
5:  Add 𝑏𝑠 to 𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
6:  Remove 𝑏𝑠 from 𝐵
7:  for each remaining box 𝑏𝑖 in 𝐵 do
8:  if 𝐶𝑠 ≠ 𝐶𝑖 ∧ (𝑏𝑖, 𝐶𝑖) then
9:  Compute the Intersection over Smaller (IoS) between 𝑏𝑠
and 𝑏𝑖

10:  if IoS(𝑏𝑠, 𝑏𝑖) > 𝑡𝑀𝑇  then
11:  Remove 𝑏𝑖 from 𝐵
12:  end if
13:  else
14:  Compute the Intersection over Union (IoU) between 𝑏𝑠

and 𝑏𝑖
15:  if IoU(𝑏𝑠, 𝑏𝑖) > 𝑡 then
16:  Remove 𝑏𝑖 from 𝐵
17:  end if
18:  end if
19:  end for
20: end while
21: return 𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

Let 𝐼 ∶ ℝ3 → ℝ be an input image, where 𝐼(𝑥, 𝑦, 𝑐) represents the 
value on such a point with 𝑐 ∈ [1⋯ 3] RGB channels, and let det(𝐼, 𝑇 )
be the set of detections obtained from a base detector applied to 𝐼 with 
a confidence threshold 𝑇 . The following steps summarize the DAHI in-
ference process based on its core modules:

• Global Detection. A low-threshold (𝛽) global inference produces an 
initial detection set:

init = det(𝐼, 𝛽).

These detections guide the density estimation process.

Fig. 4. Example of potential duplicate: full scene on the left (with a zone marked with a dashed red line) and the detail of such area showing the duplication on 
the right with the partial detection (red line) and complete one (green line). As the partial detection lies on the region 1 margin (blue-shaded area), the CMA-NMS 
technique is applied to remove it. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1 
Training settings for UAVDT, VisDrone, and SODA-D datasets, in-
cluding cropping probabilities, crop size ranges, and input resizing 
parameters.

 Setting  UAVDT  VisDrone  SODA-D
 Cropping probability 2∕3
 Crop size range (px)  [360,720]  [480,960]  [400,600]
 Resize range (px)  [540,1024]  [800,1333]  [800,800]
 YOLOv10 input size (px)  1280  1280  800

Table 2 
Inference settings for UAVDT, VisDrone, and SODA-D datasets, including region 
proposal sizes, aspect ratios, RDE thresholds, and post-processing parameters.
    Component  Setting  UAVDT  VisDrone  SODA-D  
 

RDE

 Region size range (px)  [360,720]  [480,960]  [400,600] 
  Aspect ratio of regions  2:1  16:9  1:1  
  Region proposals per image 𝑛 = 1000
  Density threshold 𝛽 = 0.001
  Regularization parameter 𝜆 = 0.001
  DACS  Patch selection metric  IoS threshold 𝜏 = 0.25
  NMS  IoU threshold 𝑡 = 0.65
 
CMA-NMS

 IoU threshold 𝑡 = 0.65
  Margin (px) 𝜃 = 10
  IoS threshold 𝑡𝑀𝑇  = 0.9
  Detector  Confidence threshold 𝐶𝑇𝐻 = 0.01

• Candidate Region Sampling. A set  = {𝑟1,… , 𝑟𝑛} of 𝑛-random 
candidate regions is generated over 𝐼 , matching the crop sizes used 
during training.

• Region Density Estimation (RDE). For each region 𝑟𝑖 ∈ , its esti-
mated density is computed as:
𝑑𝑖 = (𝑟𝑖,init),

where  is defined in Eq. (1) and reflects the spatial concentration 
of initial detections.

• Region Selection (DACS). DACS selects a subset of informative, 
low-overlapping regions:
ROI = DACS(, {𝑑𝑖}, 𝜏),

where 𝜏 controls the allowed region overlap.
• Regional Inference. For each selected region 𝑟𝑘 ∈ ROI, apply de-
tection and rescale coordinates to the global frame:
ROI =

⋃

𝑟𝑘∈ROI

rescale
(

det(𝑟𝑘, 𝐶TH)
)

.

Meanwhile, filter the global detections using a final threshold 𝐶TH:
𝐼 = {𝑏𝑗 ∈ init ∣ confidence(𝑏𝑗 ) > 𝐶TH}.

• Detection Fusion (CMA-NMS). Merge ROI and 𝐼  into the final 
prediction set using the margin-aware post-processing method:
final = CMA-NMS(𝐼 ∪ ROI, 𝑆, 𝐶, 𝑡, 𝑡𝑀𝑇 ),

where 𝑆 represents the corresponding confidences, 𝐶 the original 
crop for each detection, 𝑡 the overlap threshold, and 𝑡𝑀𝑇  the margin 
test overlap threshold.

This formulation emphasizes the modular structure of DAHI and its 
seamless integration of Region Density Estimation, Density-Aided Crop 
Selection, and Crop Margin Aware NMS proposed techniques.

4.  Experiments

This section presents the experimental evaluation of DAHI across 
multiple detectors and datasets. We aim to assess its performance in 

terms of accuracy, efficiency, and integration with standard object de-
tectors. The evaluation covers four main aspects: (i) quantitative analy-
sis of the optional efficiency parameters (𝑁𝑅𝑂𝐼  and 𝐶𝐷𝑇𝐻 ), (ii) compar-
ison with state-of-the-art multi-inference methods, (iii) ablation studies 
to isolate the contributions of each component, and (iv) qualitative re-
sults illustrating DAHI’s behavior in challenging datasets.

4.1.  Experimental setup

In our experiments, DAHI was evaluated by embedding it into five 
object detectors: GFL v1 [21], Faster-RCNN [17], RetinaNet [6], FSAF 
[20], and YOLOv10 [19]. All detectors except YOLOv10 were imple-
mented using MMDetection [36]; YOLOv10 used its official repository. 
ResNet-18 backbones were used for VisDrone and UAVDT experiments, 
while ResNet-50 was used for SODA-D.

Training settings, including cropping strategies and resizing config-
urations, are summarized in Table 1. Cropping probabilities and size 
ranges were selected to ensure diversity while avoiding artifacts from 
excessive interpolation of small patches.

Inference settings are summarized in Table 2. Region proposals 
maintain aspect ratios derived from the original image resolutions. RDE 
uses a density threshold 𝛽 = 0.001 and a regularization constant 𝜆 =
0.001 to stabilize density estimates. CMA-NMS hyperparameters were 
tuned empirically to ensure robustness across detectors.

All experiments were conducted on a single NVIDIA RTX 3090 GPU 
using the default hyperparameters provided by each detector’s official 
implementation.

4.2.  Datasets

We evaluate our method on three widely used benchmarks for 
small object detection: VisDrone2019-Detection [13], UAVDT [14], and 
SODA-D [15]. These datasets present diverse scenarios in terms of res-
olution, object scale variation, and scene complexity, offering a repre-
sentative testbed for validating multi-inference strategies like DAHI.

VisDrone comprises drone-captured urban and suburban scenes with 
high object density, frequent occlusion, and varying lighting conditions, 
making it especially challenging for detectors operating at low resolu-
tions or with limited context. Similarly, UAVDT targets vehicle detec-
tion in urban areas from UAVs and is characterized by strong class im-
balance and small object sizes, often under heavy occlusion or motion 
blur; following [32], we merge all vehicle types into a single evalua-
tion category. Finally, SODA-D is a large-scale benchmark focused on 
small object detection in driving scenarios, featuring images captured 
by onboard and mobile phone cameras. It introduces fine-grained an-
notations across multiple size ranges, making it particularly suited to 
evaluate density-aware region proposals.

Table 3 summarizes main dataset properties. Their combination en-
sures a comprehensive evaluation of DAHI across varied distributions, 
densities, and real-world conditions.

4.3.  Evaluation metrics

We assess object detection performance using standard evaluation 
protocols for the previously mentioned datasets. For VisDrone, we fol-
low its own evaluation method [13], while for UAVDT, we adopt the 
MS COCO protocol [37], and for SODA-D, we use the original evalua-
tion procedure from [15]. We report 𝐀𝐏, 𝐀𝐏50, 𝐀𝐏75, and specific eval-
uations for small object categories: extra-small (𝐀𝐏𝐞𝐒), relatively small 
(𝐀𝐏𝐫𝐒), generally small (𝐀𝐏𝐠𝐒), and a combined small-object average 
(𝐀𝐏𝐍).

The primary metric is Average Precision at an IoU threshold of 
0.5 (𝐀𝐏50), computed across categories with up to 500 detections. We 
also report size-specific variants: 𝐀𝐏𝟓𝟎𝐬, 𝐀𝐏𝟓𝟎𝐦, and 𝐀𝐏𝟓𝟎𝐥 for small, 
medium, and large objects. We use 𝐀𝐏50 instead of the standard COCO 

Pattern Recognition 171 (2026) 112228 

6 



J. Suárez-Ramírez et al.

Table 3 
Summary of datasets used to evaluate DAHI.

 Images  Resolution  Classes  Scene and Notable Features
 VisDrone [13]  8,599  800–1333 (rescaled)  10  Aerial scenes Dense layouts Frequent occlusion Illumination variability
 UAVDT [14]  23k train 15k test  1024×540  3  Urban traffic Captured by UAVs Severe class imbalance Sparse vehicles
 SODA-D [15]  24,828 images (328k patches)  800×800 (sliced)  9  Driving scenarios High object variety Small, dense targets Onboard and phone cameras

𝐀𝐏 due to its robustness for small object detection; higher IoU thresh-
olds disproportionately penalize small objects, e.g., a 2-pixel misalign-
ment in an 8-pixel object causes a 25% drop in IoU [7]. Addition-
ally, we report Average Recall (𝐀𝐑) with 𝐀𝐑100 and 𝐀𝐑500, reflect-
ing recall over the top 100 and 500 predictions, as per VisDrone’s
guidelines.

Regarding the execution times, we report the mean number of in-
ferences (#𝐼𝑛𝑓 .), inference time, and total time (in ms). We break down 
inference time to identify whether it is more influenced by preprocessing 
or the number of inferences.

4.4.  Evaluation of DAHI efficiency parameters

In this section, we analyze the influence of the optional parameters 
𝑁𝑅𝑂𝐼  and 𝐶𝐷𝑇𝐻  on inference count and detection quality according the 
𝐀𝐏 and 𝐀𝐑 metrics.

Table 4 shows how the parameters 𝑁𝑅𝑂𝐼  and 𝐶𝐷𝑇𝐻  affect the per-
formance. We tested our approach with five detectors, adjusting both 
parameters and including results for DAHI without them. We also com-
pared results using fixed and random aspect ratios (RAR) for region
generation.

For configurations where 𝑁𝑅𝑂𝐼 = 2 and 𝐶𝐷𝑇𝐻  is set to 0.8 or 0.9, 
both the number of inferences and 𝐀𝐏50 show a slight, yet not sub-
stantial, decrease. In contrast, setting 𝑁𝑅𝑂𝐼 = 1 leads to a more pro-
nounced drop in both metrics. The DAHI variant incorporating Random 
Aspect Ratios (DAHI RAR) enables, on average, approximately 0.7 addi-
tional regions per image without breaching the overlap threshold. Con-
sequently, this results in a higher number of inferences, although it does 
not consistently yield improvements in 𝐀𝐏 across most detectors.

These findings confirm that the optional parameters reduce the mean 
inference time, which is useful for practical applications where speed is 
crucial without sacrificing accuracy. This efficiency stems from region 
selection based on the density measure.

Table 4 
Influence of the optional parameters in the results for three different network 
configurations, considering the mean number of inferences (#𝐼𝑛𝑓 .) and metrics 
for the VisDrone dataset. RAR stands for Random Aspect Ratio.
    Model 𝑁𝑅𝑂𝐼 𝐶𝐷𝑇𝐻 #𝐼𝑛𝑓 . 𝐴𝑃 𝐴𝑃 50 𝐴𝑅100 𝐴𝑅500 
 

Faster-RCNN [17]

 1  –  2.00  26.41  48.82  33.95  39.09 
  2  –  2.66  26.97  49.99  34.31  40.35 
  –  0.8  2.51  26.95  49.95  34.27  40.26 
  –  0.9  2.66  27.02  50.07  34.29  40.42 
  –  –  2.73  27.04  50.10  34.31  40.47 
  with RAR  –  –  3.37  27.07  50.36  34.15  40.93 
 
FSAF [20]

 1  –  2.00  25.68  50.17  31.37  43.81 
  2  –  2.65  25.99  50.62  31.63  44.26 
  –  0.8  2.45  25.98  50.61  31.58  44.19 
  –  0.9  2.63  26.00  50.62  31.60  44.24 
  –  –  2.73  26.02  50.63  31.65  44.27 
  with RAR  –  –  3.46  26.04  50.68  31.52  44.29 
 
GFL [21] Resnet50

 1  –  2.00  31.92  56.00  38.29  46.55 
  2  –  2.63  32.49  56.92  38.56  47.86 
  –  0.8  2.50  32.46  56.86  38.54  47.76 
  –  0.9  2.64  32.51  56.95  38.57  47.90 
  –  –  2.70  32.54  56.99  38.57  47.94 
  with RAR  –  –  3.41  32.80  57.72  38.68  49.25 

4.5.  Comparison with state-of-the-art methods

Next, we evaluate our proposed technique using the three datasets 
discussed earlier in the paper: VisDrone, UAVDT, and SODA-D.
Table 5 compares DAHI against state-of-the-art detectors in Visdrone 
and UAVDT, including Faster-RCNN, FSAF, YOLOv10, and GFL, using 
both single-image inference (baseline) and region-based multi-shot ap-
proaches. We also test several configurations, including region-based 
methods such as DMNet, CZ, CRENet, GLSAN, and SAHI, as well as Uni-
form Cropping (UC) and DAHI in two variants. Table 6 compares the 
performance of these models on the SODA-D dataset, with a particular 
focus on small object detection.

In Table 5, DAHI demonstrates competitive performance, achieving 
high 𝐀𝐏50 scores across all detectors. While it does not always outper-
form every method in every metric, it consistently ranks among the top 
methods. Notably, DAHI shows promising results in small object de-
tection, outperforming other approaches in metrics such as 𝐀𝐏𝐞𝐒 and 
𝐀𝐏𝐫𝐒. Its region search technique, which requires 1–2 ms per image, 
also stands out for its efficiency, significantly reducing processing time 
compared to methods like CRENet and GLSAN, which require 30 ms and 
100 ms per image, respectively.

In Table 6, DAHI shows a good performance, achieving the highest 
𝐀𝐏50 in comparison to the other region-based methods tested. Although 
UC shows slightly better 𝐀𝐏50 scores, it is considerably slower, with an 
average processing time 72.3% longer than DAHI. This underscores the 
trade-off between accuracy and computational efficiency, with DAHI 
maintaining high performance while being computationally efficient.

Figs. 5–7 provide a qualitative comparison for each dataset. Addi-
tionally, Figs. 6 and 7 highlight main stages in the inference process, 
such as crop selection and the impact of CMA-NMS on detection refine-
ment, respectively.

Fig. 5 depicts experimental results on an image from the VisDrone 
dataset, comparing models by focusing on the same region for di-
rect comparison. The baseline detector struggles with long-distance 
object detection. The Uniform Cropping (UC) method detects larger 
objects but fails to identify pedestrians at the same distance, while 
CRENet and DAHI perform better by selecting smaller, denser re-
gions. The qualitative results for CRENet and DAHI in this region are
comparable.

To assess the performance of various multi-inference methods in se-
lecting regions of interest (ROIs) on the UAVDT dataset and their impact 
on detections, Fig. 6 provides a visual representation of this analysis. As 
seen, DAHI selects fewer ROIs compared to other methods like GLSAN 
and UC. However, DAHI’s ROIs are more informative, whereas GLSAN 
and UC, which select a fixed number of ROIs, may choose irrelevant 
areas. Selecting non-relevant ROIs can negatively affect detection effi-
ciency and precision. In cases where GLSAN and UC choose inappro-
priate ROIs, false positives appear, which can mislead the detection net-
work. By selecting fewer but more relevant ROIs, DAHI helps reduce the 
occurrence of false positives and improves both efficiency and accuracy 
compared to methods that select a fixed number of regions regardless 
of their informativeness. Nevertheless, false positives are not entirely 
eliminated

Fig. 7 demonstrates the effectiveness of CMA-NMS in addressing the 
challenges of false positives at crop boundaries. While other region-
based methods struggle with false positives, particularly near the edges 
of crops—such as traffic signs on the left and pedestrians on the
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Table 5 
Comparison across models and region-based methods on VisDrone and UAVDT. Italics: baseline (full image); bold: best region-based per row. 
    Datasets  VisDrone  UAVDT
  Model #𝐼𝑛𝑓 . 𝐴𝑃 𝐴𝑃 50 𝐴𝑅100 𝐴𝑅500  Time (ms) #𝐼𝑛𝑓 . 𝐴𝑃 50 𝐴𝑃50𝑠 𝐴𝑃50𝑚 𝐴𝑃50𝑙  Time (ms)
  Inf.  Total  Inf.  Total  
 

Faster-RCNN [17]

 Baseline  1.00  23.40  42.44  31.61  33.66  42.74  42.74  1.0  62.1  55.5  85.4  48.0  27.0  27.0  
  DMNet [10]  2.42  23.32  42.35  31.28  33.84  87.43  4486.33  2.1  64.7  57.2  87.8  58.1  50.2  2126.2  
  CZ [34]  3.58  25.37  48.52  31.57  40.65  123.92  124.13  1.03  64.6  57.1  87.8  58.1  27.6  27.6  
  SAHI [7]  5.19  26.48  49.43  33.39  40.70  174.69  174.69  7.0  69.8  63.7  88.9  58.4  153.6  153.6  
  CRENet [11]  2.17  26.02  48.26  33.10  38.84  79.56  155.35  1.2  66.6  59.9  88.0  57.8  31.2  73.9  
  GLSAN [12]  5.00  26.32  49.57  32.94  42.29  168.70  212.90  5.0  71.1  65.6  87.3  55.3  111.4  339.0  
  UC (2 × 2)  5.00  27.44  51.46  34.16  43.00  168.70  168.70  5.0  69.4  63.1  87.3  54.0  111.4  111.4  
  DAHI  2.73  27.04  50.10  34.31  40.47  97.19  98.75  2.6  72.5  67.3  88.6  56.1  60.8  61.8  
  DAHI RAR  3.37  27.07  50.36  34.15  40.93  117.36  118.92  3.5  71.4  65.9  88.5  56.2  79.8  80.8  
 

FSAF [20]

 Baseline  1.00  24.16  47.88  30.45  40.87  69.54  69.54  1.0  61.5  54.2  84.3  48.5  39.0  39.0  
  DMNet [10]  2.42  23.51  46.56  29.66  40.44  139.51  4538.41  2.1  64.0  56.5  85.8  56.9  69.8  2145.8  
  CZ [34]  3.58  24.25  47.75  29.58  42.59  196.85  197.04  1.03  64.0  56.4  85.8  56.9  39.9  39.9  
  SAHI [7]  5.19  25.50  50.02  31.06  43.27  276.07  276.07  7.0  67.7  61.1  87.4  58.6  207.0  207.0  
  CRENet [11]  2.84  25.26  49.34  30.80  43.16  160.21  284.01  1.4  66.0  59.2  86.0  56.7  50.2  92.0  
  GLSAN [12]  5.00  25.52  49.66  30.82  44.41  266.70  298.30  5.0  70.6  65.0  87.0  56.1  151.0  280.0  
  UC (2 × 2)  5.00  26.09  50.27  31.57  44.86  266.70  266.70  5.0  70.7  64.8  86.6  53.1  151.0  151.0  
  DAHI  2.73  26.02  50.63  31.65  44.27  154.79  160.36  2.6  72.1  66.9  87.9  56.3  83.8  84.8  
  DAHI RAR  3.46  26.04  50.68  31.52  44.29  190.78  196.35  3.4  71.5  66.1  87.7  56.7  106.2  107.2  
 

YOLOv10 [19]

 Baseline  1.00  33.21  57.10  39.18  47.15  57.01  57.01  1.0  64.8  57.8  86.3  48.8  42.93  42.93  
  DMNet [10]  2.42  34.28  58.39  40.49  47.40  137.96  4536.86  2.1  65.1  58.0  86.4  49.1  90.15  2166.15 
  CZ [34]  3.58  36.00  61.74  41.39  52.28  204.10  204.28  1.03  64.9  58.0  86.2  48.9  44.22  44.22  
  SAHI [7]  5.19  37.73  63.88  43.10  54.52  295.88  295.88  7.0  67.6  62.7  85.7  48.9  300.50  300.5  
  CRENet [11]  2.69  37.52  63.84  42.76  53.13  159.06  332.06  1.52  67.8  61.4  86.2  49.0  158.84  359.04  
  GLSAN [12]  5.00  36.39  62.22  41.84  53.33  285.05  318.75  5.0  67.9  62.7  85.9  49.6  214.64  365.84  
  UC (2 × 2)  5.00  37.00  63.22  42.37  53.85  285.05  285.05  5.0  66.6  60.3  85.4  49.3  214.64  214.64  
  DAHI  2.72  37.08  63.64  42.26  52.01  153.93  157.13  2.0  69.4  63.6  87.3  50.2  115.91  117.61  
  DAHI RAR  3.38  37.62  64.50  42.83  53.04  194.40  197.60  2.37  70.2  65.1  87.2  50.4  145.96  147.66  
 

GFL [21]

 Baseline  1.00  27.03  48.36  34.55  40.35  70.58  70.58  1.0  64.4  57.4  87.0  54.8  39.9  39.9  
  DMNet [10]  2.42  26.70  47.28  33.86  39.73  143.02  4541.92  2.1  66.7  59.4  90.0  60.4  72.0  2148.0  
  CZ [34]  3.58  28.75  51.85  34.62  46.14  202.11  202.30  1.03  66.6  59.3  90.0  60.4  40.8  40.8  
  SAHI [7]  5.19  28.98  52.90  35.51  44.84  284.29  284.29  7.0  69.7  63.5  90.3  58.4  215.1  215.1  
  CRENet [11]  2.79  29.09  51.87  35.38  45.31  161.89  348.89  3.7  67.6  60.7  89.9  59.7  118.7  318.9  
  GLSAN [12]  5.00  29.63  53.08  35.69  47.51  274.60  308.90  5.0  71.0  64.8  89.7  58.0  156.7  307.9  
  UC (2 × 2)  5.00  30.54  54.29  36.47  48.54  274.60  274.60  5.0  71.2  65.0  88.9  56.3  156.7  156.7  
  DAHI  2.72  30.02  53.57  36.34  46.22  158.32  162.04  2.7  74.0  68.6  90.6  58.9  89.5  91.2  
  DAHI RAR  3.40  30.12  53.65  36.25  46.95  193.00  196.72  3.4  72.5  66.7  90.4  58.7  110.0  111.7  
 

GFL [21] + R50

 Baseline  1.00  29.20  51.04  36.14  41.92  81.91  81.91
  DMNet [10]  2.42  29.11  50.86  36.12  42.05  169.66  4568.56
  CZ [34]  3.58  30.98  54.95  37.00  48.32  241.44  241.62
  SAHI [7]  5.19  31.73  56.49  38.11  47.50  340.84  340.84
  CRENet [11]  2.79  31.70  55.55  37.82  47.64  192.52  365.52
  GLSAN [12]  5.00  32.02  56.40  38.20  49.89  329.10  362.80
  UC (2 × 2)  5.00  33.00  57.87  38.89  50.76  329.10  329.10
  DAHI  2.70  32.54  56.99  38.57  47.94  186.96  190.16
  DAHI RAR  3.41  32.80  57.72  38.68  49.25  230.84  234.04

right—DAHI, using CMA-NMS, mitigates this issue by refining the de-
tection results. This allows DAHI to avoid introducing additional false 
positives, as seen in other methods. The baseline detector, while not 
affected by the crop boundary problem, introduces false negatives in 
other areas of the image, demonstrating a trade-off between missing de-
tections and reducing false positives. The strategy proposed by DAHI 
successfully reduces the impact of both false positives and false nega-
tives, providing a more robust solution for object detection, especially in 
challenging scenarios with objects near boundaries. The results shown 
in this figure highlight how CMA-NMS helps improve overall detection 
accuracy and reliability in these cases

Overall, the results from all three datasets indicate that DAHI is a 
strong contender in the field of small object detection. While it may 
not always outperform all methods in every metric, it provides a well-
rounded balance of accuracy and speed, making it a suitable choice for 
real-time applications where both precision and efficiency are impor-
tant.

4.6.  Ablation study

Next, we perform an ablation study on the VisDrone dataset to eval-
uate the contributions of each DAHI component. The patch selection 
module is analyzed first, as shown in Table 7, which compares alter-
native strategies on the left and DAHI variants on the right. In order 
to clarify the references to the different techniques, we include their 
acronym in parentheses.

Random Patches (RP) selects up to four crops without guidance and 
yields a clear drop in all metrics, reinforcing the importance of spatial 
priors. Unsupervised alternatives such as Meanshift Clustering (MSC) 
[33] and Cascade Zoom Clustering (CZC) [34] generate region propos-
als from global detections, but show weaker performance than DAHI. 
Although CZC slightly improves when guided by ground truth boxes 
(CZC GTG), it still trails behind our density-driven selection, indicating 
that DAHI benefits from a more discriminative and efficient estimation 
of relevance.
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Table 6 
Performance on SODA-D across detection models and multi-inference methods. Italics: baseline; bold: best region-based result.

 Model 𝐴𝑃 𝐴𝑃 50 𝐴𝑃 75 𝐴𝑃𝑒𝑆 𝐴𝑃𝑟𝑆 𝐴𝑃𝑔𝑆 𝐴𝑃𝐍 #𝐼𝑛𝑓 .  Time Inf (ms)  Time Total (ms)

Faster-RCNN [17]

 Baseline  28.5  59.2  23.6  13.2  25.2  34.3  43.0  1.00  85.80  85.80
 CRENET [11]  28.9  59.7  24.0  14.1  25.9  34.3  43.4  1.09  94.53  203.52
 GLSAN [12]  29.2  59.4  24.7  14.7  26.7  34.3  43.0  1.86  145.53  248.83
 UC  28.6  58.3  24.5  14.4  25.8  33.9  42.9  5.00  428.98  428.98
 DAHI  29.7  60.5  25.2  15.2  27.0  35.0  43.2  1.51  125.18  126.06

GFL [21] + R50

 Baseline  29.7  57.1  26.4  11.3  25.6  36.8  47.1  1.00  84.64  84.64
 CRENET [11]  31.1  58.3  28.3  14.3  27.7  37.3  47.7  1.61  124.48  244.42
 GLSAN [12]  30.9  57.8  28.1  15.4  27.7  36.7  47.2  2.57  192.90  394.61
 UC  30.4  57.1  27.6  14.9  27.1  36.4  47.3  5.00  423.23  423.23
 DAHI  31.3  58.9  28.5  15.1  28.3  37.4  47.6  2.07  191.26  192.61

FSAF [20]

 Baseline  27.9  57.4  23.3  11.0  24.7  34.0  44.7  1.00  87.84  87.84
 CRENET [11]  29.1  58.1  24.9  13.5  25.9  35.0  44.8  1.47  116.29  242.09
 GLSAN [12]  28.9  57.0  25.2  14.0  25.7  34.7  43.7  2.35  169.36  329.40
 UC  28.6  56.7  24.8  14.1  25.3  34.5  43.8  5.00  439.21  439.21
 DAHI  29.7  59.2  25.7  14.6  26.5  35.7  44.7  1.89  165.00  169.95

YOLOv10 [19]

 Baseline  33.7  62.1  31.2  14.0  29.6  41.2  51.6  1.00  17.05  17.05
 CRENET [11]  35.5  64.0  33.3  17.2  31.8  42.2  52.1  1.73  25.40  133.18
 GLSAN [12]  35.4  63.0  33.0  19.7  32.2  41.5  51.5  3.76  51.87  166.61
 UC  35.4  63.7  32.8  19.5  32.3  41.4  51.7  5.00  81.93  81.93
 DAHI  36.4  65.5  34.1  19.5  33.2  42.7  51.9  1.85  31.53  32.36

Fig. 5. Comparison of detections performed by different models on the VisDrone dataset. From top to bottom, left to right: Baseline, CRENet, GLSAN, UC (2 × 2), 
and DAHI. The areas of interest, where object condensation occurs, are highlighted with zoom for better visibility.

The right half of the table reports different DAHI variants. We com-
pare our density formulation (DAHI) with CRENet density formulation 
(DAHI CD), as well as a Ground Truth Guided version (DAHI GTG) and a 
version using crops with Random Aspect Ratios (DAHI RAR). DAHI CD 
reaches similar performance but requires more inferences, showing that 
our mass-normalized formulation achieves a better balance. The GTG 
variant offers slight gains, but also confirms that our inference-based 

guidance is already effective. DAHI RAR increases flexibility in some 
detectors (e.g., RetinaNet), but shows marginal benefits overall. These 
results highlight the impact of each design choice on recall and effi-
ciency, and support the versatility of our approach across architectures.

Finally, we evaluate the effect of our post-processing module CMA-
NMS in Table 8. Replacing CMA-NMS with standard NMS in DAHI 
reduces 𝐀𝐏50 by 0.4–0.6 points, due to the inability of standard
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Fig. 6. Comparison of the detection performed by different models on the UAVDT dataset: Baseline, CRENet, GLSAN, UC (2 × 2), and DAHI. Orange rectangles 
represents the selected crops of each method. Therefore, the reader can also observe the ROIs selected by each technique.

suppression to resolve overlapping detections near crop boundaries. 
We also combine CMA-NMS with Uniform Cropping (UC) using 2×2 
and 3×3 grids. Gains of 0.7×1.7 points in 𝐀𝐏50 are observed depend-
ing on detector and grid size, with stronger effects in higher-precision 

Table 7 
Ablation study on patch selection strategies across five detectors using standard NMS. The left block compares baseline methods 
(RP, CZC, CZC GTG, MSC); the right block shows DAHI variants (base, CD, GTG, RAR).

 Method  #Inf 𝐴𝑃 𝐴𝑃 50 𝐴𝑅100 𝐴𝑅500  Method  #Inf 𝐴𝑃 𝐴𝑃 50 𝐴𝑅100 𝐴𝑅500

Faster-RCNN [17]
 RP (4)  2.91  25.32  46.77  32.68  38.51  DAHI  2.73  26.75  49.53  34.07  40.69
 CZC  1.36  23.78  43.50  31.86  34.85  RAR  3.37  26.65  49.57  33.88  41.20
 CZC GTG  2.61  25.17  47.27  32.25  38.90  CD  2.99  26.63  49.53  33.84  40.67
 MSC  2.04  24.39  44.65  32.22  35.73  GTG  3.39  26.99  50.42  34.03  41.81

RetinaNet [6]
 RP (4)  2.90  22.24  40.38  29.19  34.63  DAHI  2.76  23.52  42.51  30.64  36.41
 CZC  1.45  20.73  37.29  27.91  30.49  RAR  3.46  23.89  43.48  30.62  38.02
 CZC GTG  2.61  22.25  40.74  29.25  34.86  CD  3.04  23.44  42.48  30.39  36.66
 MSC  2.07  20.55  36.87  27.73  30.39  GTG  3.39  24.25  44.20  30.96  38.58

FSAF [20]
 RP (4)  2.92  24.68  48.34  30.45  42.64  DAHI  2.73  25.84  50.22  31.44  44.40
 CZC  1.33  23.90  47.22  30.01  41.10  RAR  3.46  25.79  50.14  31.21  44.39
 CZC GTG  2.61  24.37  47.92  30.10  42.53  CD  3.08  25.76  50.28  31.37  44.19
 MSC  2.05  24.08  47.43  30.00  41.45  GTG  3.42  25.78  50.13  31.25  44.42

GFL [21]
 RP (4)  2.90  28.40  50.67  34.78  44.48  DAHI  2.72  29.78  53.09  36.19  46.41
 CZC  1.26  27.11  48.17  34.20  40.46  RAR  3.40  29.76  52.97  35.98  47.10
 CZC GTG  2.61  28.35  50.68  34.79  44.30  CD  2.95  29.65  52.74  35.92  46.07
 MSC  2.06  27.30  48.52  34.17  41.02  GTG  3.40  29.91  53.36  36.06  47.42

GFL [21] + R50
 RP (4)  2.88  30.87  54.15  37.15  46.62  DAHI  2.70  32.24  56.42  38.34  48.24
 CZC  1.31  29.56  51.77  36.46  42.99  RAR  3.41  32.35  56.86  38.30  49.50
 CZC GTG  2.61  30.68  54.00  37.13  46.60  CD  3.00  32.13  56.47  38.25  48.36
 MSC  2.06  29.89  52.27  36.67  43.52  GTG  3.41  32.33  56.78  38.35  49.68

models such as GFL+R50. These results demonstrate that CMA-NMS is 
broadly applicable and particularly beneficial in multi-inference setups 
where crops overlap and standard NMS fails to suppress redundant boxes
reliably.
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Table 8 
Results of the ablation study for the CMA-NMS technique considering the 𝐀𝐏, 𝐀𝐏50, 𝐀𝐑100 and 𝐀𝐑500 metrics for the VisDrone dataset using five 
different models. UC stands for Uniform Cropping. 
    Model  Postprocess 𝐴𝑃 𝐴𝑃 50 𝐴𝑅100 𝐴𝑅500 
 

Faster-RCNN [17]

 DAHI CMA-NMS  27.04  50.10  34.31  40.47 
  DAHI  NMS  26.75  49.53  34.07  40.69 
  UC (2 × 2) CMA-NMS  27.92  52.40  34.53  42.72 
  UC (2 × 2)  NMS  27.44  51.46  34.16  43.00 
  UC (3 × 3) CMA-NMS  27.91  52.87  33.95  44.68 
  UC (3 × 3)  NMS  27.13  51.28  33.16  45.02 
 

RetinaNet [6]

 DAHI CMA-NMS  23.72  42.90  30.72  36.14 
  DAHI  NMS  23.52  42.51  30.64  36.41 
  UC (2 × 2) CMA-NMS  25.13  45.66  31.65  39.73 
  UC (2 × 2)  NMS  24.77  44.95  31.31  40.03 
  UC (3 × 3) CMA-NMS  25.90  47.62  31.81  43.06 
  UC (3 × 3)  NMS  25.29  46.37  31.37  43.31 
 

FSAF [20]

 DAHI CMA-NMS  26.02  50.63  31.65  44.27 
  DAHI  NMS  25.84  50.22  31.44  44.40 
  UC (2 × 2) CMA-NMS  26.42  51.01  31.88  44.86 
  UC (2 × 2)  NMS  26.09  50.27  31.57  44.86 
  UC (3 × 3) CMA-NMS  26.53  51.04  31.59  45.24 
  UC (3 × 3)  NMS  26.03  49.90  31.00  45.32 
 

GFL [21]

 DAHI CMA-NMS  30.02  53.57  36.34  46.22 
  DAHI  NMS  29.78  53.09  36.19  46.41 
  UC (2 × 2) CMA-NMS  31.01  55.24  36.91  48.47 
  UC (2 × 2)  NMS  30.54  54.29  36.47  48.54 
  UC (3 × 3) CMA-NMS  31.05  55.46  36.84  49.39 
  UC (3 × 3)  NMS  30.31  54.03  36.01  49.44 
 

GFL [21] + R50

 DAHI CMA-NMS  32.54  56.99  38.57  47.94 
  DAHI  NMS  32.24  56.42  38.34  48.24 
  UC (2 × 2) CMA-NMS  33.54  58.90  39.33  50.62 
  UC (2 × 2)  NMS  33.00  57.87  38.89  50.76 
  UC (3 × 3) CMA-NMS  33.67  59.47  39.17  51.69 
  UC (3 × 3)  NMS  32.75  57.71  38.40  51.70 

Fig. 7. Comparison of the detection performed by different models on the VisDrone dataset, from top to bottom and left to right: Baseline, CRENET, GLSAN, UC 
(2 × 2), and DAHI. This example highlights CMA-NMS’s effectiveness, as other region-based methods struggle with false positives at crop boundaries (traffic signs on 
the left, people on the right), while DAHI reduces this effect. The baseline avoids this issue but introduces false negatives elsewhere.
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5.  Conclusions

In this work, we proposed Density-Aided Hyper Inference (DAHI), a 
technique designed to enhance small object detection by guiding addi-
tional inferences and refining detection merging. The method consists 
of three main components—Region Density Estimation (RDE), Density-
Aided Crop Selection (DACS), and Crop Margin Aware NMS (CMA-
NMS)—each targeting specific challenges in detecting small and spa-
tially clustered objects in complex scenes.

DAHI is grounded on the assumption that small objects often form lo-
cal clusters, especially in aerial imagery. This hypothesis was validated 
by analyzing object distributions through Chebyshev distance, which 
consistently revealed spatial aggregation across datasets, confirming the 
viability of density as a guide for inference. The method does not require 
retraining and integrates easily with existing object detectors, offering 
flexibility and adaptability. Besides, its modular architecture allows in-
dividual components (RDE, DACS, CMA-NMS) to be adopted separately 
in other detection pipelines.

Our experiments demonstrated that DAHI offers an effective bal-
ance between detection accuracy and inference cost. The use of density-
guided crop selection improved recall, while CMA-NMS reduced false 
positives associated with crop boundaries. Ablation studies highlighted 
the individual contribution of each module, and qualitative results fur-
ther supported the observed performance improvements. The consistent 
results across VisDrone, UAVDT, and SODA-D demonstrate its general-
izability under diverse aerial and on-road conditions.

However, its performance depends on the quality of the initial global 
inference, which may be limited in low-resolution scenarios or under
severe domain shifts, such as satellite imagery. While optimized for 
sparse and densely packed small objects, DAHI may underperform when 
objects are evenly distributed or sparse. It also relies on the base detec-
tor’s ability to generate reliable proposals, which can be challenging for 
detecting very tiny objects.

Overall, DAHI provides a modular, inference-level strategy that en-
hances detection performance in scenarios where small object scale, oc-
clusion, and scene complexity limit conventional single-pass pipelines. 
Furthermore, its high inference speed, low computational overhead, and 
plug-and-play design enable real-time, high-precision detection under 
strict latency and power constraints—making it especially suitable for 
real-world deployments such as smart-city video analytics, autonomous 
inspection drones, and edge-based monitoring systems.

Future work could explore the adaptation of DAHI to streaming video 
contexts, the incorporation of dynamic resolution mechanisms, and fur-
ther validation on low-power embedded systems to assess performance 
under real-time constraints.
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