Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/144489
Campo DC Valoridioma
dc.contributor.authorMendonca, Fábioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo García, Antonio Gabrielen_US
dc.contributor.authorFigueiredo, Mario A.T.en_US
dc.date.accessioned2025-08-05T11:57:41Z-
dc.date.available2025-08-05T11:57:41Z-
dc.date.issued2025en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/144489-
dc.description.abstractUncertainty analysis of classification or regression models is a key feature of probabilistic approaches to supervised learning, allowing the assessment of how trustworthy predictions are. Just as boosting algorithms aim at obtaining accurate ensembles of simple classifiers, by using a process guided by the accuracy of each of these classifiers, the method proposed in this paper builds an ensemble guided by the uncertainty of each of its individual models. The proposed method, named ProBoost (probabilistic boosting), uses the epistemic uncertainty of each training sample to determine those about which each model is most uncertain; the importance of these samples is then increased for the next learner, producing a sequence that progressively focuses on samples found to have the highest uncertainty. In the end, the learned models are combined into an ensemble. Three methods are proposed to update the importance of the samples according to the uncertainty estimates at each stage: undersampling, oversampling, and weighting. Furthermore, two approaches are studied regarding the final ensemble combination. The learners herein considered are standard convolutional neural networks, and the probabilistic models underlying the uncertainty estimation use either variational inference or Monte Carlo dropout. The experimental evaluation carried out on MNIST benchmark datasets shows that ProBoost yields significant performance improvement, compared to not using ProBoost, and outperforms a wider single model with a similar number of parameters.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Accessen_US
dc.sourceIEEE Access [EISSN 2169-3536], v. 13, (Enero 2025)en_US
dc.subject.otherBoostingen_US
dc.subject.otherConvolutional Neural Networksen_US
dc.subject.otherMachine Learningen_US
dc.subject.otherMonte Carloen_US
dc.subject.otherProbabilistic Algorithmsen_US
dc.titleProBoost: Reducing Uncertainty using a Boosting Method for Probabilistic Modelsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2025.3592797en_US
dc.identifier.scopus105011701352-
dc.contributor.orcid0000-0002-5107-3248-
dc.contributor.orcid0000-0002-7677-0971-
dc.contributor.orcid0000-0001-7334-3993-
dc.contributor.orcid0000-0002-8512-965X-
dc.contributor.orcid0000-0002-0970-7745-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid59157708300-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid34769730500-
dc.identifier.eissn2169-3536-
dc.relation.volume13en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,96
dc.description.jcr3,4
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,4
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Artículos
Adobe PDF (2,13 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.