Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/142635
DC FieldValueLanguage
dc.contributor.authorGarcia-Jimenez, Pilaren_US
dc.contributor.authorRobaina, Rafael R.en_US
dc.date.accessioned2025-07-14T12:17:38Z-
dc.date.available2025-07-14T12:17:38Z-
dc.date.issued2025en_US
dc.identifier.issn2296-7745en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/142635-
dc.description.abstractIntroduction The discovery of transposable elements (TEs), or transposons, by Barbara McClintock in 1950 revolutionized our understanding of genome dynamics. TEs are recognized for their critical role in genetic variability and evolution. They are categorized into two main classes: class I (retrotransposons), which transpose via an RNA intermediate, and class II, which transpose directly via DNA. TEs significantly influence gene expression through insertions that can disrupt gene function. Consequently, organisms have evolved mechanisms to regulate TE activity, particularly under stress conditions, where TE activation can lead to mutations. In marine macroalgae, TEs are known to shape genome architecture, yet little is known about their dynamics.Methods In this study, 17 publicly available but non-annotated algal genomes were analyzed to identify and characterize transposable elements. The Earlgrey pipeline, a powerful tool for TE annotation, was used to quantify their diversity and historical activity. A local script was further employed to investigate the genomic co-localization of TEs with annotated protein-coding sequences.Results The analysis revealed significant diversity in TE composition among red, brown, and green algae. Retrotransposons with long terminal repeats (LTRs) were found to be particularly abundant in red algae. Many of these LTRs were located near or within regions encoding proteins, as identified through three protein databases. Notably, these included LTR-specific enzymes such as ribonuclease H, as well as nucleic acid-binding proteins and cation-binding proteins like CCHC-type zinc-finger proteins and haem peroxidase superfamily members, which are involved in stress response pathways.Discussion The co-localization of LTRs with stress-responsive protein-coding genes raises intriguing questions about the potential regulatory interplay between TEs and stress adaptation. It remains to be determined whether LTR activity is modulated by the activation of these proteins under stress, or if LTRs have been assimilated into the cellular network to promote protein expression as part of an adaptive response. These findings suggest a promising avenue for exploring the functional integration of TEs into stress resilience mechanisms and highlight their potential role in the evolutionary dynamics of marine algae.en_US
dc.languageengen_US
dc.relation.ispartofFrontiers in Marine Scienceen_US
dc.sourceFrontiers In Marine Science [ISSN 2296-7745], v. 12, (Junio 2025)en_US
dc.subject241707 Algología (ficología)en_US
dc.subject.otherEpigenetic regulationen_US
dc.subject.otherEvolutionen_US
dc.subject.otherGenomeen_US
dc.subject.otherRetrotransposonsen_US
dc.subject.otherRhodophytaen_US
dc.subject.otherCallusen_US
dc.subject.otherTransposonsen_US
dc.subject.otherSeaweeden_US
dc.subject.otherLtr Typeen_US
dc.subject.otherGene Productsen_US
dc.subject.otherEvolutionary dynamicsen_US
dc.subject.otherStress responseen_US
dc.titleExploring transposons in macroalgae: LTR elements and neighboring genes in red seaweedsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/fmars.2025.1592442en_US
dc.identifier.isi001522031700001-
dc.identifier.eissn2296-7745-
dc.relation.volume12en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages10en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Garcia-Jimenez, P-
dc.contributor.wosstandardWOS:Robaina, RR-
dc.date.coverdateJunio 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr0,907
dc.description.jcr2,8
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,3
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUNAT: Biología Integrativa y Recursos Biológicos-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Biología-
crisitem.author.deptGIR IUNAT: Biología Integrativa y Recursos Biológicos-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0002-4732-0381-
crisitem.author.orcid0000-0003-4265-5809-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameGarcía Jiménez, M. Del Pilar-
crisitem.author.fullNameRobaina Romero, Rafael Juan-
Appears in Collections:Artículos
Adobe PDF (1,42 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.