Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/142619
DC FieldValueLanguage
dc.contributor.authorDorta González, Pabloen_US
dc.contributor.authorGómez Déniz, Emilioen_US
dc.date.accessioned2025-07-14T08:52:57Z-
dc.date.available2025-07-14T08:52:57Z-
dc.date.issued2025en_US
dc.identifier.issn2304-6775en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/142619-
dc.description.abstractThis work aims to use a suitable regression model to study a count response random variable, namely, the number of citations of a research paper, that is affected by some explanatory variables. The count variable exhibits substantial variation, as the sample variance is larger than the sample mean; thus, the classical Poisson regression model seems not to be appropriate. We concentrate our attention on the negative binomial regression model, which allows the variance of each measurement to be a function of its predicted value. Nevertheless, the process of citations of papers may be divided into two parts. In the first stage, the paper has no citations, while the second part provides the intensity of the citations. A hurdle model for separating documents with citations and those without citations is considered. The dataset for empirical application consisted of 43,190 research papers in the Economics and Business field from 2014–2021, which were obtained from The Lens database. Citation counts and social attention scores for each article were gathered from the Altmetric database. The main findings indicate that both collaboration and funding have positive impacts on citation counts and reduce the likelihood of receiving zero citations. Open access (OA) via repositories (green OA) correlates with higher citation counts and a lower probability of zero citations. In contrast, OA via the publisher’s website without an explicit open license (bronze OA) is associated with higher citation counts but also with a higher probability of zero citations. In addition, open access in subscription-based journals (hybrid OA) increases citation counts, although the effect is modest. There are clear disciplinary differences, with the prestige of the journal playing a significant role in citation counts. Articles with lower expert ratings tend to be cited less frequently and are more likely to be cited zero times. Meanwhile, news and blog mentions boost citations and reduce the likelihood of receiving no citations, while policy mentions also enhance citation counts and significantly lower the risk of being cited zero times. In contrast, patent mentions have a negative impact on citations. The influence of social media varies: X/Twitter and Wikipedia mentions increase citations and reduce the likelihood of being uncited, whereas Facebook and video mentions negatively impact citation counts.en_US
dc.languageengen_US
dc.relation.ispartofPublicationsen_US
dc.sourcePublications[EISSN 2304-6775],v. 13 (2), (Junio 2025)en_US
dc.subject570106 Documentaciónen_US
dc.subject.otherAltmetricsen_US
dc.subject.otherCitesen_US
dc.subject.otherHurdle Modelen_US
dc.subject.otherNegative Binomialen_US
dc.subject.otherRegressionen_US
dc.titleA two-stage model for factors Influencing citation countsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/publications13020029en_US
dc.identifier.scopus105009311434-
dc.identifier.isi001514906900001-
dc.contributor.orcid0000-0003-0494-2903-
dc.contributor.orcid0000-0002-5072-7908-
dc.contributor.authorscopusid6506711531-
dc.contributor.authorscopusid15724912000-
dc.identifier.eissn2304-6775-
dc.identifier.issue2-
dc.relation.volume13en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.contributor.daisngid420079-
dc.contributor.daisngid31805086-
dc.description.numberofpages25en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Dorta-González, P-
dc.contributor.wosstandardWOS:Gómez-Déniz, E-
dc.date.coverdateJunio 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,793
dc.description.sjrqQ1
dc.description.esciESCI
dc.description.miaricds7,4
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0003-0494-2903-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameDorta González, Pablo-
crisitem.author.fullNameGómez Déniz, Emilio-
Appears in Collections:Artículos
Adobe PDF (5,19 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.