Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/142438
DC FieldValueLanguage
dc.contributor.authorSanfilippo, Stefanoen_US
dc.contributor.authorHernández Cabrera, José Juanen_US
dc.contributor.authorKandler, Christophen_US
dc.contributor.authorHernández Gálvez, José Juanen_US
dc.contributor.authorÉvora Gómez, Joséen_US
dc.contributor.authorRoncal Andrés, Octavioen_US
dc.date.accessioned2025-07-11T11:37:34Z-
dc.date.available2025-07-11T11:37:34Z-
dc.date.issued2025en_US
dc.identifier.issn2255-8942en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/142438-
dc.description.abstractDesigning microgrids in remote areas is challenging due to the lack of reliable and high-quality electricity demand data. These limitations arise from technological, economic, and logistical constraints, making it difficult to estimate demand—especially when daily demand curves cannot be fully constructed due to missing or incomplete data. Traditional methods, which rely on consistent and comprehensive datasets, often prove ineffective in such conditions. To address this issue, this paper introduces a novel causal modelling approach, implemented using a neural network, to uncover the underlying relationships between key influencing factors—such as temperature, humidity, time of day, and seasonal variations—and electricity demand. Rather than requiring complete hourly demand curves as inputs, the proposed approach leverages available data to infer demand patterns more effectively. We propose a neural network architecture that aims to capture causal dependencies in electricity demand by encoding input features into a high-dimensional latent space. Using an encoderdecoder structure, the encoder maps inputs to a latent space designed to preserve potential causal relationships, while the decoder generates the demand estimation. This approach hypothesizes that this configuration may help to get causal dependencies. To evaluate this, we compared our model against a simpler neural network architecture characterised by a triangular layer structure. Using real-world data from El Espino, Bolivia, our model achieved a Mean Squared Error (MSE) of 0.0511 with the Adam optimiser, representing a 61.8% improvement over the simpler neural network architecture. A sensitivity analysis further confirmed the relevance of selected input variables, showing that excluding temporal-based features, such as the month of the year and weekend indicator, increased estimation error, with an 11.7% increase in MSE. These findings highlight the model’s effectiveness in handling data limitations and its potential as a scalable solution for electricity demand estimation in remote areas.en_US
dc.languageengen_US
dc.relation.ispartofBaltic Journal Of Modern Computingen_US
dc.subject120317 Informáticaen_US
dc.subject.otherMicrogridsen_US
dc.subject.otherRemote areasen_US
dc.subject.otherElectricity demanden_US
dc.subject.otherCasual Modeen_US
dc.subject.otherEstimationen_US
dc.subject.otherNeural networksen_US
dc.titleA Neural Network-Based Causal Model for Electricity Demand Estimation in Remote Areas: A Case Study in El Espino, Boliviaen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.22364/bjmc.2025.13.2.01en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,253
dc.description.sjrqQ3
dc.description.esciESCI
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2427-2441-
crisitem.author.orcid0000-0001-9348-7265-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameHernández Cabrera, José Juan-
crisitem.author.fullNameHernández Gálvez, José Juan-
crisitem.author.fullNameÉvora Gómez, José-
crisitem.author.fullNameRoncal Andrés, Octavio-
Appears in Collections:Artículos
Adobe PDF (742,51 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.