Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/142179
DC FieldValueLanguage
dc.contributor.authorCampos Delgado, Daniel Ulisesen_US
dc.contributor.authorMendoza-Chavarría, Juan Nicolásen_US
dc.contributor.authorGutierrez-Navarro, Omaren_US
dc.contributor.authorQuintana Quintana, Lauraen_US
dc.contributor.authorCallicó, Gustavoen_US
dc.date.accessioned2025-07-07T08:27:47Z-
dc.date.available2025-07-07T08:27:47Z-
dc.date.issued2025en_US
dc.identifier.issn1070-9908en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/142179-
dc.description.abstractMultimodal images (MIs) can capture different modalities of a scene with multiple applications in medicine, remote sensing, food inspection, among others. Over a 2D domain, these images acquire spectral/morphological/temporal information of each spatial point. Unmixing methodologies can decompose this spatial and spectral/morphological/temporal information. In this letter, a unified framework is proposed for unsupervised unmixing, explicitly accounting for Gaussian and sparse noise. Our approach is novel in three key aspects: (i) addresses the general case of multimodal images, (ii) unifies linear and multilinear mixing models, and (iii) incorporates noise effects into the synthesis schemes. The proposed methodology relies on cyclic coordinate descent optimization (CCDO), constrained quadratic estimation, and L1-regularization. For the validation stage, two types of synthetic MIs were used with additive Gaussian and sparse noise terms. Additionally, the Urban dataset was employed for further validation to consider a real-world scenario. The results show that the proposed methodologies provide accurate reconstructions of the datasets, as well as the ground-truth abundance maps and end-members with low computational time.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Signal Processing Lettersen_US
dc.sourceIEEE Signal Processing Letters[ISSN 1070-9908], (Enero 2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherCorrelated Multimodal Imagesen_US
dc.subject.otherLinear Unmixingen_US
dc.subject.otherMultilinear Unmixingen_US
dc.subject.otherSparse Noiseen_US
dc.titleUnified Unsupervised Unmixing with Sparse Noise Estimation for Linear and Multilinear Modelsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LSP.2025.3582539en_US
dc.identifier.scopus105009369482-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57207809029-
dc.contributor.authorscopusid57713505200-
dc.contributor.authorscopusid13604892600-
dc.contributor.authorscopusid58183363200-
dc.contributor.authorscopusid56006321500-
dc.identifier.eissn1558-2361-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,271
dc.description.jcr3,2
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,9
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-1154-6490-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameCampos Delgado, Daniel Ulises-
crisitem.author.fullNameQuintana Quintana, Laura-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Appears in Collections:Artículos
Adobe PDF (608,31 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.