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Abstract—Multimodal images (MIs) can capture different
modalities of a scene with multiple applications in medicine,
remote sensing, food inspection, among others. Over a 2D
domain, these images acquire spectral/morphological/temporal
information of each spatial point. Unmixing methodologies can
decompose this spatial and spectral/morphological/temporal in-
formation. In this letter, a unified framework is proposed for
unsupervised unmixing, explicitly accounting for Gaussian and
sparse noise. Our approach is novel in three key aspects: (i)
addresses the general case of multimodal images, (ii) unifies linear
and multilinear mixing models, and (iii) incorporates noise effects
into the synthesis schemes. The proposed methodology relies
on cyclic coordinate descent optimization (CCDO), constrained
quadratic estimation, and L1-regularization. For the validation
stage, two types of synthetic MIs were used with additive
Gaussian and sparse noise terms. Additionally, the Urban dataset
was employed for further validation to consider a real-world
scenario. The results show that the proposed methodologies
provide accurate reconstructions of the datasets, as well as
the ground-truth abundance maps and end-members with low
computational time.

Index Terms—linear unmixing, multilinear unmixing, corre-
lated multimodal images, sparse noise

I. INTRODUCTION

D IGITAL imaging is a powerful tool for automatic in-
spection and evaluation of a given scene. An evolution

of this tool is given by MIs [1], where different modali-
ties of the scene are captured, for example (i) spatial and
spectral (hyperspectral imaging, HSI) [2], and (ii) spatial and
spectral/temporal (multi-spectral fluorescence lifetime imaging
microscopy, m-FLIM) [3]. After data acquisition of a MI, the
next challenge is to perform a proper and efficient analysis
of the captured information. Unmixing methodologies can
help to analyze and decompose the spectral, morphological or
temporal responses from the spatial information: end-members
and their abundances [4], [5]. The end-members represent
basic spectral/temporal/morphological responses which are
common in the 3D tensor; and the abundances stand for
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their spatial contributions over the 2D domain. Furthermore,
the relationship between end-members and their abundances
can be represented by linear and nonlinear mixing models
(LMM and NMM) [6], [7]. In HSI, nonlinear mixing models
have also been suggested to physically represent multiple-
scattering effects during the optical acquisition process [8].
In this sense, the multilinear mixing model (MMM) is a
relevant representation [9], where at each spatial point, a scalar
parameter quantifies the nonlinear optical interactions. In fact,
recent contributions with LMM and MMM also consider deep-
learning strategies for unsupervised unmixing, where deep
autoencoders networks were implemented by using fully-
connected or convolutional networks [10], [11].

During the acquisition process of MIs, noise could be
induced by instrumentation and environmental effects: thermal
(Johnson), quantization, strip and shot (photon) [12], which
could mislead and disrupt the unmixing process. While prepro-
cessing could attenuate the noise negative effects, aggressive
denoising might remove valuable spectral information, poten-
tially distorting the unmixing results [13]. With a supervised
perspective, linear unmixing was addressed with Gaussian
and sparse noise components in [14], where total-variation-
based regularization, sparsity constraints, and split-Bregman
method were used to derive an iterative optimization scheme.
Meanwhile, in [13], also with a supervised perspective, linear
unmixing was studied considering Gaussian, sparse, and strip
noise components, and a self-adjusted stepsize was proposed
during the iterative optimization algorithms. In this context,
this letter introduces a unified framework for treating linear
and nonlinear unmixing schemes for MIs with an unsuper-
vised perspective by considering Gaussian and sparse noise
sources in their synthesis schemes, while keeping closed-
form solutions and guaranteeing convergence. This technical
contribution departs from our previous unmixing strategies: ex-
tended blind end-member and abundance extraction (EBEAE)
[15], and nonlinear EBEAE (NEBEAE) [16], where an initial
version of this contribution was presented in [17].

The notation used in this work is described below. Scalars,
vectors, matrices and tensors are denoted by italic, boldface
lowercase, boldface uppercase and underlined-boldface up-
percase letters, respectively. An L-dimensional vector with
unitary entries and the corresponding identity matrix are
defined as 1L, and IL, respectively. For a general vector x,
its transpose is represented by x⊤, its l-th component by (x)l,
its Euclidean norm by ∥x∥ =

√∑
l(x)

2
l , the L1 norm by

∥x∥1 =
∑

l |xl|, and |x| represents a new vector obtained by
applying the absolute value component-wise. For two vectors
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x and y, x ⊙ y defines its Hadamard product. For a matrix
X, ∥X∥F =

√
Tr(XX⊤) denotes its Frobenius norm, where

Tr(·) expresses the trace operation. A diagonal matrix formed
by the elements in x is defined as diag(x), and for a symmetric
matrix X, λmin(X) represents its minimum eigenvalue. For a
set X , card(X ) denotes its cardinality.

II. METHODOLOGY

A. Unmixing problem formulation

We assume a MI represented by a 3D tensor X ∈
RL×Nx×Ny where each element is considered non-negative, L
is the number of samples in the spectral, time or morphological
domain, and Nx and Ny are the spatial dimensions. The tensor
X is reshaped by unfolding the spatial domain into a 2D matrix
Z ∈ RL×K where K = Nx × Ny . In this way, each column
zk ∈ RL of Z represents the spectral/morphological/time
response of a spatial point, with zk ≥ 0 component-wise for
all k ∈ K = {1, . . . ,K}. Following previous works [15],
[16], these measurements are scaled to sum-to-one to avoid
numerical problems yk = zk/(1

⊤
Lzk) ∀k ∈ K. In this way,

the set of original and scaled measurements are defined as
Z = {z1, . . . , zK} and Y = {y1, . . . ,yK}, respectively. In
what follows, we will present the corresponding equations for
linear and multilinear models associated with each variable
or optimization term within a unified framework [15], [16].
Hence, the k-th scaled measurement is represented by a N -th
order mixing model:

yk=

{
Pαk + nk + vk, (LMM)
(1− dk)Pαk + dk (Pαk)⊙ zk + nk + vk, (MMM)

(1)
where P = [p1 . . .pN ] ∈ RL×N is the matrix of end-
members, pn ∈ RL is the n-th end-member (pn ≥ 0)
∀n ∈ N = {1, . . . , N}, αk = [αk,1 . . . αk,N ]⊤ ∈ RN is
the vector of abundances at k-th measurement, αk,n ≥ 0
denotes the abundance of n-th end-member, dk ∈ (−∞, 1]
is the nonlinear interaction level in a MMM, nk ∈ RL

represents sparse noise, and vk ∈ RL is a white noise vector.
The elements in vk are assumed zero-mean and i.i.d. with a
Gaussian distribution (1⊤

Lvk ≈ 0), and the set of end-members
P = {p1, . . . ,pN} is linearly independent. As shown in [16],
due to the normalization condition on the scaled measurements
1⊤
Lyk = 1 ∀k ∈ K, the following restrictions are imposed:

1⊤
Lpn = 1.0 & pn ≥ 0, (2)

δ⊤k αk + 1⊤
Lnk = 1.0 & αk ≥ 0, (3)

where δk ∈ RN is adjusted according to the mixing model:

δk =

{
1N , (LMM)
(1− dk)1N + dkP

⊤zk, (MMM) . (4)

In this framework, EBEAE and NEBEAE with sparse noise
(EBEAE-SN & NEBEAE-SN) synthesis problems are formu-
lated as CCDO schemes, where the cost functions include four
key elements: (i) Reconstruction error term (RET), (ii) abun-
dances entropy component, (iii) sparse noise regularization,
and (iv) end-members similarity term [15], [16]:

min
1

2K
RET − µ

2K

∑
k∈K

∥αk∥2 +
λ

K

∑
k∈K

∥nk∥1

+
ρ

2ϑ

N−1∑
n=1

N∑
j=n+1

∥pn − pj∥2, (5)

such that (2) and (3) are jointly satisfied and

RET =

{ ∑
k∈K

∥yk−Pαk−nk∥2

∥yk∥2 , (LMM)∑
k∈K

∥yk−(1−dk)Pαk−dk(Pαk)⊙zk−nk∥2

∥yk∥2 , (MMM)
(6)

where ϑ = (N−1)+ · · ·+1 for N ≥ 3 and ϑ = 1 for N = 2.
For EBEAE-SN, the optimization variables in (5) are P, {αk}
and {nk}, and for NEBEAE-SN, it also includes {dk}. Since
a CCDO is applied to solve iteratively (5), at a time, one
type of variable is optimized and the rest are kept fixed. The
unified proposed algorithm is described in Algorithm 1, and
the solutions to the individual optimization problem are briefly
described next.

B. Abundance estimation
The cost function in (5) is written just with respect to the

abundance vector αk at the k-th spatial location:

min
αk≥0, δ⊤

k αk=1−1⊤
Lnk

1

2

∥sk −Λkαk∥2

∥yk∥2
− µ

2
∥αk∥2, (7)

where sk = yk − nk , and

Λk =

{
P, (LMM)
P⊙

[
(1− dk)1L×N + dkz

⊤
k 1N

]
. (MMM) (8)

Following a similar derivation as in [15], the hyper-parameter
µ in (7) is redefined as µ = µ̃ · λmin(Λ

⊤
k Λk)/∥yk∥2 where

µ̃ ∈ [0, 1) is a new normalized hyper-parameter. The solution
to the constrained quadratic optimization in (7) is:

αk = Θk ·

(
Λ⊤

k sk −
s⊤k ΛkΘkδk −

[
1− 1⊤

Lnk

]
δ⊤k Θkδk

1N

)
, (9)

where Θk =
(
Λ⊤

k Λk − µ̃λmin(Λ
⊤
k Λk)IN

)−1

.

C. Sparse noise estimation
From (5), for the k-th measurement, the sparse noise term

nk is estimated by the following problem:

min
nk≥0

∥nk∥1 +
1

2λ

∥nk − ek∥2

∥yk∥2
, (10)

where

ek =

{
yk −Pαk, (LMM)
yk − (1− dk)Pαk − dk(Pαk)⊙ zk. (MMM)

(11)
Since this optimization involves a L1-regularized problem, a
solution is reached by a shrinkage operation [18]:

nk = sign(ek)⊙max
{
0, |ek| − λ∥yk∥2

}
. (12)

where sign(·) is applied component-wise. Finally, a rectifier
unit is applied to the estimation nk to guarantee positive
entries ∀k. By analyzing the solution in (12), there is no
coupling among all spatial points, so a matrix computation
can be pursued to obtain in parallel the estimation process:

N = sign(E)⊙max (0, |E| − λYe) , (13)

where N = [n1 . . .nK ], E = [e1 . . . eK ], and Ye =[
∥y1∥2 · 1L . . . ∥yK∥2 · 1L

]
.
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D. End-members estimation

The cost-function in (5) is written with respect to the end-
members matrix P:

min
pn≥0,1⊤

Lpn=1

1

2K
EMET +

ρ

2ϑ

N−1∑
n=1

N∑
j=n+1

∥pn − pj∥2, (14)

where

EMET=

{ ∑
k∈K

∥sk−Pαk∥2

∥yk∥2 , (LMM)∑
k∈K

∥sk−(1−dk)Pαk−dk(Pαk)⊙zk∥2

∥yk∥2 . (MMM)
(15)

For the LMM, the constrained optimization problem is
quadratic and admits a closed-solution by following a similar
derivation as in [19]:

P=

(
IL −

1L1
⊤
L

L

)
SWA⊤

(
AWA⊤ +

ρ

ϑ
O
)−1

+
1L1

⊤
N

L
,

(16)
where S = Y−N, Y = [y1 . . .yK ], A = [α1 . . .αK ], W =
(1/K)diag([1/∥y1∥2 . . . 1/∥yK∥2]) and O = NIN−1N1⊤

N .
Meanwhile, for the MMM, a closed-solution is not viable, so
an iterative gradient descent approach with an optimized linear
search is considered (as in [16]), so at the l-th iteration, the
update is:

Pl+1 = Pl − γlΓl l ≥ 0, (17)

where

Γl=
∑
k∈K

{
−(Ml

k)
⊤slk(α

l
k)

⊤

K∥yk∥2
+
(Ml

k)
⊤Ml

kP
lαl

k(α
l
k)

⊤

K∥yk∥2

}
+
ρPlO

2ϑ
,

(18)
Ml

k = (1 − dlk)IL − dlkdiag(zk), and γl = max
(
0,

γl
num

γl
den

)
,

such that:

γl
num =

∑
k∈K

(αl
k)

⊤(Γl)⊤(Ml
k)

⊤(Ml
k)(P

lαl
k − slk)

K∥yk∥2

+ ρTr
(
ΓlO(Pl)⊤ +PlO(Γl)⊤

)
/2ϑ, (19)

γl
den =

∑
k∈K

(αl
k)

⊤(Γl)⊤(Ml
k)

⊤Ml
kΓ

lαl
k

K∥yk∥2
+

ρTr
(
ΓlO(Γl)⊤

)
ϑ

.

(20)

E. Estimation of Nonlinear Interaction Level

Finally, for the MMM, the resulting quadratic problem in
(5) for the k-th nonlinear interaction level dk is given by:

min
dk∈(−∞,1]

1

2

∥qk + dkmk∥2

∥yk∥2
∀k ∈ K. (21)

where qk = yk −Pαk−nk, and mk = Pαk−(Pαk)⊙ zk.
As a result, the optimal solution is achieved as [16]:

dk = min

(
1,− q⊤

k mk

∥mk∥2

)
. (22)

F. Implementation of iterative optimization

In our proposals, there are four hyper-parameters
(N, µ̃, λ, ρ) that influence the unmixing process, i.e. order of
the model, and weights on abundances entropy, sparse noise
regularization, and end-members similarity, respectively [15],
[16]. Meanwhile, the optimization problems in (7), (10), (14)

and (21) are all convex and they allow closed-solutions, as
shown in (9), (13), (16), and (21), respectively. The only
exception is the end-member estimation for the MMM,
which is solved iteratively by (17). Therefore, in the CCDO
iteration, a convergent iteration is expected, and at l-th step,
the global estimation error is computed by J l = ∥Y − Ŷl∥F
where

Ŷl =

{
PlAl +Nl, (LMM)
Ωl ⊙ (PlAl) +Dl ⊙ (PlAl)⊙ Z+Nl, (MMM)

(23)
Ωl = 1L×N − Dl, and Dl =

[
dl1 · 1L . . . dlK · 1L

]
. With

these definitions, we propose the convergence conditions:

|J l − J l+1|
J l

< ϵ ∨ l ≥ lmax, (24)

where ϵ > 0 is a minimum improvement threshold, and lmax

the maximum iterations.

Algorithm 1 EBEAE-SN and NEBEAE-SN Methodologies
Input: Set of measurements Z , hyper-parameters (N, µ̃, λ, ρ),

initial matrix P0, and convergence parameters ϵ and lmax.
Output: End-member matrix P, abundances matrix A, sparse

noise matrix N, estimated scaled measurements Ŷ, and
for MMM, {dk} nonlinear interaction levels.

1: Normalize measurements set Z to obtain Y .
2: Set l = 0, J0 = 106, and assign abundances, sparse noise

components, and for MMM, nonlinear interaction levels
to zero, i.e. α0

k = 0, n0
k = 0, and d0k = 0 ∀k ∈ K.

3: while Convergence condition in (24) is not satisfied. do
4: Update abundances αl+1

k by (9) ∀k ∈ K.
5: Update Nl+1 by (13).
6: For LMM, update Pl+1 by (16), and for MMM, by the

gradient descent rule in (17).
7: For MMM, update dl+1

k by (22).
8: Compute Ŷl+1 by (23), update J l+1 and l← l + 1.
9: end while

III. VALIDATION RESULTS

To provide a common baseline for validation, synthetic
MIs were used under two noise models: (i) Gaussian noise,
controlled via a signal-to-noise ratio (SNR), and (ii) sparse
uniformly distributed (SUD) noise, defined by a density level.
Performance was assessed using the following metrics with
respect to ground-truth (GT): (a) normalized error in measure-
ments, (b) error in abundances, (c) error in end-members, (d)
spectral angle mapper (SAM) for end-members, (e) computa-
tional time, and for the MMM, (f) normalized error in non-
linear interaction levels [16]. In addition, these synthetic MIs
were used to analyze the convergence behavior of the proposed
algorithms, and the results are presented in the Supplementary
Material. To complement the synthetic experiments, the Urban
hyperspectral dataset was included to evaluate the methods un-
der real-world conditions [20], and this validation step is also
included in the Supplementary Material. All MATLAB scripts
are available at: https://github.com/Nicothe4th/EBEAE-SN.

For the LMM scenario, a m-FLIM synthetic MI with four
fluorophores and three spectral bands is used [3]. The spatial
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dimension is 128 × 128 pixels with 558 time samples. The
GT for abundances and end-members are shown in Fig. 1-a).
The abundance maps were generated by a Gaussian mixture
to show regions of high and low concentrations for each fluo-
rophore. We compare EBEAE-SN with: (i) EBEAE [15], (ii)
preserving intrinsic structure invariant non-negative matrix fac-
torization (PISI-NMF) [21], (iii) hyperspectral unmixing with
joint sparsity and total variation (HU-JSTV) [14], and (iv) dual
simplex volume maximization for simplex-structured matrix
factorization (Max-Vol-Dual) [22]. A Monte Carlo analysis
with 50 realizations for each noise level was conducted. Table I
shows a significant improvement in the measurements error by
our proposal EBEAE-SN, outperforming the rest of the meth-
ods by an order of magnitude. In addition, this improvement
is also shown for the metrics concerning abundances and end-
member errors, and SAM in end-members with statistically
significant differences. Finally, with respect to computational
time, our proposal ranked second, just surpassed by EBEAE.

Fig. 1. Ground-truths of end-members & abundance maps for the synthetic
MIs: (a) m-FLIM with LMM, and (b) HSI with MMM.

In the MMM scenario, a visible and near-infrared synthetic
HSI was employed as a MI, whose dimensions are 64 × 64
pixels with 281 spectral bands. The GT for end-members
and abundances are shown in Fig. 1-b). The end-members
represent the absorbance of oxygenated and deoxygenated
hemoglobin, fat and water [23]. Meanwhile, abundance maps
were generated by the HYperspectral Data Retrieval and
Analysis (HYDRA) toolbox with a spherical Gaussian pattern
for N=4 components [24]. NEBEAE-SN was compared with
four methodologies based on a MMM: (i) NEBEAE [16],
(ii) a supervised approach for MMM [9] (SUP-MMM), (iii)
an unsupervised scheme for MMM [25] (UNS-MMM), and
(iv) a MMM unmixing based on particle swarm optimization
[26] (AMMMPSO). The results of this validation stage are
presented in Table II. Similar to the LMM analysis, a signifi-

TABLE I
MONTE CARLO RESULTS (MEAN ± STANDARD DEVIATION) OF SYNTHETIC

LMM ANALYSIS (BOLD-FACE HIGHLIGHTS BEST PERFORMANCE).

SNR/ EBEAE-SN EBEAE PISI-NMF HU-JSTV Max-Vol-Dual
Density of SUD (Proposed)

Error in Measurements Estimation (%)
30/0.01 0.02± 0.0002 0.29± 0.0004 0.29± 0.0048 0.3300± 0.62 0.31± 0.0011

35/0.0075 0.01± 0.0002 0.25± 0.0004 0.26± 0.0054 0.1800 ± 0.50 0.27± 0.0016
40/0.005 0.01± 0.0002 0.21± 0.0004 0.21± 0.0043 0.1500 ± 0.15 0.23± 0.0024

Error in Abundances Estimation
30/0.01 6.23± 0.4 9.30 ± 0.9 8.92 ± 1.4 12.82 ± 7.0 13.56 ± 0.3

35/0.0075 5.81± 0.8 8.52 ± 0.9 8.39 ± 1.5 10.06 ± 5.2 14.09 ± 0.4
40/0.005 5.47± 0.7 7.40 ± 0.7 7.29 ± 1.2 12.72 ± 7.1 14.55 ± 0.6

Error in End-members Estimation (×10−3)
30/0.01 3.13± 1.2 6.55± 5.7 8.29± 1.2 8.66± 2.3 8.24± 0.4

35/0.0075 2.96± 0.8 5.18± 0.4 7.48± 0.1 7.11± 0.1 7.14± 0.5
40/0.005 2.61± 0.4 3.92± 0.3 5.59± 1.1 5.87± 1.6 6.18± 0.3

SAM in End-members Estimation (×10−2)
30/0.01 2.15± 1.0 3.65 ± 0.5 5.19 ± 0.9 5.60 ± 1.6 3.00 ± 0.03

35/0.0075 1.95± 0.6 2.96 ± 0.4 5.01 ± 1.2 4.82 ± 1.0 2.76 ± 0.02
40/0.005 1.69± 0.3 2.32 ± 0.3 3.96 ± 0.8 4.21 ± 1.1 2.27 ± 0.03

Computational Time (s)
30/0.01 2.49 ± 0.8 0.70± 0.1 16.60 ± 1.0 14.88 ± 0.5 26.4 ± 7.9

35/0.0075 2.23 ± 0.4 0.71± 0.1 17.17 ± 1.1 15.17 ± 0.5 23.7 ± 1.4
40/0.005 2.23 ± 0.6 0.74± 0.1 16.40 ± 0.7 14.80 ± 0.4 23.6 ± 1.8

* No statistically significant difference (p-values > 0.05) compared to EBEAE-SN

cant improvement was observed in the measurements error by
NEBEAE-SN. Regarding errors in abundances, end-members,
and nonlinear interaction levels, NEBEAE-SN did not show
significant differences. Finally, in terms of computational time,
NEBEAE outperformed the other methods, followed in two of
the three cases by NEBEAE-SN.

TABLE II
MONTE CARLO RESULTS (MEAN ± STANDARD DEVIATION) OF SYNTHETIC

MMM ANALYSIS (BOLD-FACE HIGHLIGHTS BEST PERFORMANCE).

SNR/ NEBEAE-SN NEBEAE SUP-MMM UNS-MMM AMMMSPO
Density of SUD (Proposed)

Error in Measurements Estimation (%)
30/0.01 0.02± 0.001 0.59± 0.001 0.60± 0.002 0.59± 0.001 0.92± 0.002

35/0.0075 0.02± 0.002 0.54± 0.001 0.55± 0.002 0.54± 0.001 0.90± 0.002
40/0.005 0.01± 0.001 0.47± 0.001 0.48± 0.001 0.47± 0.001 0.90± 0.001

Error in Abundances Estimation
30/0.01 3.89± 1.7 4.16± 0.4 6.24± 0.7 4.77± 1.0 6.18± 0.7

35/0.0075 3.61± 1.5 3.85± 0.6 6.00± 1.1 4.36± 0.5 6.12± 1.1
40/0.005 3.48± 0.8 3.27± 0.5∗ 5.90± 1.0 3.79± 0.5 5.78± 1.0

Error in End-members Estimation (×10−2)
30/0.01 1.45± 0.5 1.33± 0.2∗ 1.91± 0.4 1.42± 0.5∗ 1.72± 0.4

35/0.0075 1.30± 0.3 1.16± 0.3∗ 1.70± 0.5 1.14± 0.2∗ 1.76± 0.5
40/ 0.005 1.14± 0.3 0.89± 0.3∗ 1.54± 0.4 0.94± 0.2∗ 1.51± 0.5

SAM in End-members Estimation (×10−2)
30/0.01 9.01± 3.3 7.8± 1.5∗ 12.88± 3.3 9.5± 3.3∗ 11.5± 3.0

35/0.0075 8.03± 2.4 6.8± 2.1∗ 11.52± 3.9 8.1± 1.7∗ 11.6± 3.4
40/0.005 7.24± 2.0 5.4± 1.8∗ 10.27± 3.4 7.0± 1.3∗ 10.6± 3.0

Error in nonlinear Interaction Levels Estimation (%)
30/0.01 0.30± 0.03 0.27± 0.02 0.45± 0.03 0.33± 0.02 1.15± 0.01

35/0.0075 0.22± 0.02 0.20± 0.02∗ 0.36± 0.02 0.26± 0.03 1.15± 0.01
40/0.005 0.15± 0.05 0.13± 0.01∗ 0.28± 0.02 0.19± 0.03 1.13± 0.01

Computational Time (s)
30/0.01 6.37± 6.4 2.27± 0.2 6.03± 0.4* 6.97± 4.1 445.5± 9.64

35/0.0075 5.81± 5.5 2.32± 0.3 6.65± 0.4 7.36± 1.1 442.1± 3.21
40/0.005 5.09± 1.3 2.23± 0.2 7.08± 0.3 8.18± 0.5 440.9± 1.76

* No statistically significant difference (p-values > 0.05) compared to NEBEAE-SN

IV. CONCLUSIONS

This work presented a unified methodology extending our
previous linear and multilinear unmixing strategies to han-
dle both Gaussian and sparse noise components. Our re-
sults showed that EBEAE-SN and NEBEAE-SN outperformed
other methods in synthetic MIs, with EBEAE-SN achieving
the best abundance estimation, end-member error, and SAM.
NEBEAE-SN offered the best balance between error metrics
and computational time, showing no significant difference
from the top methods. In the real-world scenario from remote
sensing, our proposals excelled the comparison methods in
the error metrics. However, despite performing an extra opti-
mization step with the sparse noise matrix N, both methods
did not significantly increase computational time, achieving
similar processing speeds to state-of-the-art methods.
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