Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/141826
Campo DC Valoridioma
dc.contributor.authorIsmail, Shahiden_US
dc.contributor.authorDiaz, Moisesen_US
dc.contributor.authorAleman, Belen E.en_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.date.accessioned2025-07-01T09:20:17Z-
dc.date.available2025-07-01T09:20:17Z-
dc.date.issued2025en_US
dc.identifier.issn1380-7501en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/141826-
dc.description.abstractMedical prescription, academic development, and content control are the most important age-related applications for school-going children. Among the aforementioned applications, the introduction of an intervention is critical for children who are lagging behind their peers in graphonomotor (handwriting and drawing) skills. Age classification using handwriting is an inverse problem which is related to the academic excellence of the children. It is inherently challenging in nature due to differences in learning abilities of growing children. To address the inherent problems in identifying the age of a child, we have put forth a machine learning-based system which is able to do multi-class classification. It separates the children of primary school into three age groups of 4, 6, and 9 years old, as this age group is most suitable for an intervention. We have introduced a decision system which can assist educators to assess the validity of a classification to introduce the intervention. This decision system utilizes a voting-based methodology for inference. Due to the detailed explanation that the decision system provides, it can act as a standalone or complementary part of an expert system for an intervention. We also utilized various deep learning-based methods and concluded that for unbalanced datasets, machine learning-based systems can outperform the deep learning-based systems. The computational load of machine learning is much less than deep learning-based systems due to the small number of features. Moreover, the best classification reported by our systems is 87% while using an artificial neural network, a classifier taken from machine learning domain.en_US
dc.languageengen_US
dc.relation.ispartofMultimedia Tools and Applicationsen_US
dc.sourceMultimedia Tools and Applications[ISSN 1380-7501], (Enero 2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherAge Classificationen_US
dc.subject.otherBengali Handwritingen_US
dc.subject.otherExpert Systemen_US
dc.subject.otherInterventionen_US
dc.subject.otherSchool Going Childrenen_US
dc.titleExploring Bengali handwriting as a tool for classifying children’s age groupsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11042-025-20977-xen_US
dc.identifier.scopus105008479705-
dc.contributor.orcid0000-0003-4759-8444-
dc.contributor.orcid0000-0003-3878-3867-
dc.contributor.orcid0009-0001-3654-4048-
dc.contributor.orcid0000-0002-2924-1225-
dc.contributor.authorscopusid57201735463-
dc.contributor.authorscopusid59815658500-
dc.contributor.authorscopusid58682911500-
dc.contributor.authorscopusid55636321172-
dc.identifier.eissn1573-7721-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,745
dc.description.jcr3,5
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.