Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/139859
DC FieldValueLanguage
dc.contributor.authorGahmousse, Abdellatifen_US
dc.contributor.authorDjeddi, Chawkien_US
dc.contributor.authorGattal, Abdeljalilen_US
dc.contributor.authorCheddad, Abbasen_US
dc.contributor.authorDiaz, Moisesen_US
dc.date.accessioned2025-06-10T17:01:18Z-
dc.date.available2025-06-10T17:01:18Z-
dc.date.issued2025en_US
dc.identifier.issn1863-1703en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139859-
dc.description.abstractPersonality trait identification through handwriting analysis presents a challenging area within automated document recognition based on Artificial Intelligence solutions. Recent studies relied on solutions automating graphonomic processes, while others address only a few local features, conversely few studies offer solutions based on textural features. In this work, we propose an automated approach for personality trait identification that treats a scripter’s handwriting as a texture by leveraging a diverse set of textural features, including LCP, oBIFCs, LPQ, LBP, among others. The approach is validated on FFM-annotated datasets using cost-effective classifiers such as XGBoost, Random Forest, Gradient Boost, SVM, and Naive Bayes. Our empirical study enabled the judicious selection of the most suitable textural features for each personality trait. Subsequently, we constructed a comprehensive personality trait identification solution by combining multiple textural features and integrating top-performing classifiers. The experimental results demonstrated the validity of our hypothesis, achieving performance improvements of more than 10% on both datasets.en_US
dc.languageengen_US
dc.relation.ispartofSignal, Image and Video Processingen_US
dc.sourceSignal, Image and Video Processing [ISSN 1863-1703],v. 19 (6), (Junio 2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherCombined classificationen_US
dc.subject.otherFive factor modelen_US
dc.subject.otherPersonality traitsen_US
dc.subject.otherTextural featureen_US
dc.titleExploring textural features for handwriting-based personality assessment: an experimental studyen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11760-025-04061-3en_US
dc.identifier.scopus105001720812-
dc.identifier.isi001458363600001-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57218622266-
dc.contributor.authorscopusid55078188200-
dc.contributor.authorscopusid50861074100-
dc.contributor.authorscopusid24328557700-
dc.contributor.authorscopusid36760594500-
dc.identifier.eissn1863-1711-
dc.identifier.issue6-
dc.relation.volume19en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid73056525-
dc.contributor.daisngid2384380-
dc.contributor.daisngid589591-
dc.contributor.daisngid62158242-
dc.contributor.daisngid50164430-
dc.description.numberofpages8en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Gahmousse, A-
dc.contributor.wosstandardWOS:Djeddi, C-
dc.contributor.wosstandardWOS:Gattal, A-
dc.contributor.wosstandardWOS:Cheddad, A-
dc.contributor.wosstandardWOS:Diaz, M-
dc.date.coverdateJunio 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr0,558
dc.description.jcr2,0
dc.description.sjrqQ2
dc.description.jcrqQ3
dc.description.scieSCIE
dc.description.miaricds10,6
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.fullNameDíaz Cabrera, Moisés-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.