Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139750
Título: Reconstruction-Based 2DPCANet for Unsupervised SAR Image Change Detection
Autores/as: Wu, Jie
Zhang, Qimeng
Li, Rongrong
Gomez, Luis 
Frery, Alejandro C. 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Pcanet
Feature Extraction
Radar Polarimetry
Principal Component Analysis
Vectors, et al.
Fecha de publicación: 2025
Publicación seriada: IEEE Geoscience and Remote Sensing Letters 
Resumen: In this letter, considering the effectiveness of 2-D principal component analysis (2DPCA) on the exploration of local spatial relationships, a reconstruction-based 2DPCA (Rec-2DPCA) operation was designed for feature extraction and injected into the architecture of PCANet for change detection of bitemporal synthetic aperture radar (SAR) image. Specifically, as the projection of an image patch on one eigenvector computed by 2DPCA breaks the one-to-one relationship between feature map and eigenvalue, we adopted Rec-2DPCA at various network layers and developed two variants of PCANet, namely, 2DPCANet and (2-D + 1-D)PCANet. In the experiments, using three real SAR image datasets, we analyzed the performance of all comparison methods, and our proposals achieved a more appealing performance than other methods.
URI: https://accedacris.ulpgc.es/handle/10553/139750
ISSN: 1545-598X
DOI: 10.1109/LGRS.2025.3547844
Fuente: IEEE Geoscience and Remote Sensing Letters[ISSN 1545-598X], v. 22, (Enero 2025)
Colección:Artículos
Adobe PDF (8,05 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.