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Abstract— In this letter, considering the effectiveness of
2-D principal component analysis (2DPCA) on the exploration
of local spatial relationships, a reconstruction-based 2DPCA
(Rec-2DPCA) operation was designed for feature extraction and
injected into the architecture of PCANet for change detection of
bitemporal synthetic aperture radar (SAR) image. Specifically,
as the projection of an image patch on one eigenvector com-
puted by 2DPCA breaks the one-to-one relationship between
feature map and eigenvalue, we adopted Rec-2DPCA at various
network layers and developed two variants of PCANet, namely,
2DPCANet and (2-D + 1-D)PCANet. In the experiments, using
three real SAR image datasets, we analyzed the performance
of all comparison methods, and our proposals achieved a more
appealing performance than other methods.

Index Terms— 2-D principal component analysis (2DPCA),
reconstruction-based 2DPCA (Rec-2DPCA), synthetic aper-
ture radar (SAR) imagery, unsupervised change detection,
vertical 2DPCA.

I. INTRODUCTION

DUE to the usage of microwave in synthetic aperture radar
(SAR), SAR system can capture scene’s information

under all-weather and all-day [1], and SAR image has been
widely applied to analyze the land-cover information [2].
Moreover, with the development of SAR technology, contin-
uous monitoring of land-cover’s temporal changes with SAR
image has attracted many scholars’ attention [3], [4], [5], [6],
[7], [8]. Specifically, by comparing at least two SAR images
acquired on the same scene at different times, it points to
alterations that may require further actions [2].

Given the complicated backscattering behaviors, the super-
imposition of speckles, and a higher labor cost on samples’
annotation in SAR imagery, building an effective unsupervised
feature representation model to identify the changed and
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nonchanged regions within bitemporal SAR images is still
a hot spot to be studied. In the literature, using Gabor features
extracted from the difference images between bitemporal SAR
images, Li et al. [3] proposed a two-stage fuzzy clustering-
based SAR change detection method. By computing the
difference features of bitemporal SAR images with Gabor
filters, Yang et al. [9] adopted a multivariate Gaussian mixture
model to detect changes. In [10], the log-Gabor filters were
used instead of Gabor filters to compute difference features,
and the K-mean method was used for change detection.
Due to the orthogonality and scattering preservation property
of principal component analysis (PCA), PCA-based feature
was extracted in [11] for bitemporal SAR imagery change
detection.

Recently, given the capability of deep neural net-
works (DNNs) on feature representation, some deep-learning-
based SAR change detection methods have been proposed [6],
[7], [8]. However, as DNNs usually contain many parameters
that should be learned at the training stage [8], they always
require many labeled samples and a higher time consumption
for model building. In [12], inspired by the deep architecture
of convolution neural network (CNN), Chen et al. proposed a
two-layer PCANet for image classification, where the eigen-
vectors of training samples were used as convolution kernel
for feature extraction at each layer while binary hashing and
blockwise histogram were sequentially used for nonlinear
mapping. Given the simple structure and lower time consump-
tion in the learning stage, PCANet has been widely applied
for feature extraction [13], [14], [15].

Inspired by Chan et al. [12], by stacking the paired
data blocks from two registered SAR images as a sample,
Gao et al. [4] designed a PCANet-based unsupervised SAR
image change detection method with the help of pseudoclass
labeled samples. In [16], a salient map was introduced to
reduce the influence of speckle, and a saliency-guided PCANet
was designed for unsupervised SAR image change detection.
However, due to the vectoring of the image block to form a
covariance matrix in the PCA process, the spatial relationship
among pixels is usually underused [17]. By removing the
vectoring operation, a 2-D PCA (2DPCA) was designed [18]
for feature extraction and showed better performance on image
classification than that of PCA. Thus, considering the critical
role of local spatial information on feature extraction in SAR
imagery [19], 2DPCA is explored, and reconstruction-based
2DPCA (Rec-2DPCA) is designed in this letter to modify
PCANet for SAR image change detection. To sum up, our
main contributions are listed as follows.
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Fig. 1. Architecture of our method. Here, the image sample’s size is 2w × w, ul
t is the t th projection vector at the lth layer, and ℓi is the number of

projection vectors at the i th layer.

1) Using Rec-2DPCA, two variants of PCANet,
2DPCANet and (2-D + 1-D) PCANet, are proposed
for unsupervised SAR image change detection.

2) The performances of our proposals are analyzed with
three real SAR image datasets, including the parameters’
influence.

II. METHODOLOGY

In this section, using the architecture shown in Fig. 1, three
main processes adopted in our method are first introduced:
generation of pseudoclass labels, Rec-2DPCA-based feature
extraction, and nonlinear mapping. Then, the main steps of
our method are given in detail.

A. Generation of Pseudoclass Labels
In our method, Gabor features are first extracted at multi-

orientation (e.g., 8) and multiscale (e.g., 5) for each pixel of
the difference image DI that is calculated as

DI =

∣∣∣∣log
I1 + ϵ

I2 + ϵ

∣∣∣∣ (1)

where ϵ is a smaller constant value, and I1 and I2 are two
registered SAR images (intensity or amplitude) obtained at
times t1 and t2, respectively.

Then, the maximum response map among eight orientations
is calculated for each scale as the final feature. With the
final features, all the pixels are assigned with a pseudoclass
label [i.e., changed (wc), unchanged (wuc), and uncertain (wu)]
via FCM clustering method embedded with a coarse to fine
scheme [4].

B. Rec-2DPCA-Based Feature Extraction
By considering the local spatial relationship in images

Ai ∈ Rm×n, i ∈ {1, . . . , N }, 2DPCA was designed in [18]
for feature extraction. Specifically, using the covariance matrix
C =

∑N
i=1 Ai AT

i , the projection vectors are computed as

arg max
uk ,k∈[1,q]

UT CU (2)

where U = {uk |k ∈ [1, q]}, uk ∈ Rm is the projection vector
for all the columns of Ai and satisfies uT

a ub = 0, uT
a ua = 1,

a ̸= b, a, b ∈ [1, q]. Then using uk , the feature obtained for
the image sample Ai is computed as f i

k = AT
i uk, k ∈ [1, q].

Obviously, f i
k ∈ Rn is the vector while a scalar value is

obtained by classical PCA-based projection for each sample.

Fig. 2. Procedure of Rec-2DPCA.

In [4] and [12], using the eigenvectors corresponding to the
largest q eigenvalues computed by PCA method, each input
image sample was represented as q feature maps which were
of the same size as that of the input sample. The procedure
is similar to the convolution operator in CNN [14], [20]. And
a one-to-one relationship exists between the feature maps and
eigenvectors. However, using the projection vector computed
by (2), the one-to-one relationship between the feature map
and eigenvector is broken. Thus, to retain the relationship, the
reconstruction operator is adopted and named as Rec-2DPCA
to compute the feature map.

Let Bk ∈ Ra×b, k ∈ {1, . . . , N } be the image sample, the
procedure of Rec-2DPCA (shown in Fig. 2) is described as
follows.

1) Centering on each pixel of Bk , a set of patches
(e.g., Pk

t ∈ Rs1×s2 , t ∈ {1, . . . , ab}) are extracted.
2) For all the image samples, mean-removed patches are

computed by P̂k
t = Pk

t −P̄k . Here, P̄k
= (1/ab)

∑ab
t=1 Pk

t .
3) Using mean-removed patches, the covariance matrix is

computed as C =
∑N

k=1
∑ab

t=1 P̂k
t P̂kT

t .
4) By solving (2), the eigenvectors of C, correspond-

ing to first q largest eigenvalues, are stored as U =

[u1, u2, . . . , uq ] and u j ∈ Rs1 , j ∈ {1, . . . , q}.
5) Computing the feature map of Bk with u j as

B̃ j
k = Mat

([
Cp

(
u j uT

j Pk
1

)
, . . . , Cp

(
u j uT

j Pk
T

)])
where Cp(·) is the operator extracting the center point’s
value and Mat(·) indicates the reshape operation.

It is clear that B̃ j
k is of the same size as that of Bk and is

of the one-to-one relationship with u j for Bk .
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Fig. 3. Generation of image sample via concatenation.

C. Nonlinear Mapping
As nonlinear mapping is beneficial to the performance of

PCANet [4], [12], this process is also used in our method.
Specifically, using two-layer architecture shown in Fig. 1 and
assuming the number of used eigenvectors is ℓi , i ∈ {1, 2} at
the i th layer, all the output maps corresponding to the same
input at the second layer are binarized to form integer map
Z j , j ∈ {1, . . . , ℓ1} whose kth pixel’s value is computed as

zk =

ℓ2∑
l=1

2ℓ2−l
× H

(
x l

k

)
(3)

where H(x) = 0 if x < 0, otherwise H(x) = 1, and x l
k is

the value of the kth pixel at the lth output map in the second
layer.

Then, the obtained integer maps are divided into d blocks,
and the features of an image sample are computed as

f =

[
hist

(
Z1

1

)
, . . . , hist

(
Z1

d

)
, . . . , hist

(
Zℓ1

d

)]
∈ R(2ℓ2 )·ℓ1·d

where Zi
t is the t th block in the i th integer image and hist(·)

is the histogram operation.
Finally, given the effectiveness of support vector

machine (SVM) on classification, we use SVM as a
classifier to compute the final changed map.

D. Proposed Method
Given the higher reliability of samples whose pseudoclass

label is wc and wuc, we randomly selected samples from these
two sample sets for model building. To sum up, the main steps
of our method are described as follows.

1) According to Section II-A, all the samples are assigned
with pseudoclass labels (i.e., wc, wuc and wu).

2) According to the ratio between samples whose labels
are wc and wuc, training set T is formed via randomly
selection of these two samples.

3) Using the architecture shown in Fig. 1, all the samples
in T are used to learn the eigenvectors as in Section II-B
and the parameters of SVM.

4) With the learned parameters, the feature of each sample
assigned as wu is computed, and these samples are
classified as wc or wuc to obtain the final changed map.

Specifically, centering on each pixel, two registered image
blocks (w × w) are stacked as in Fig. 3 to be an image sample
in our method for feature extraction at steps 3) and 4). Note
that the size of the patch is set as p × p. And, 2DPCANet
and (2-D + 1-D)PCANet are designed, where Rec-2DPCA is
exploited at both the layers in 2DPCANet, while only the first
layer uses Rec-2DPCA in (2-D + 1-D)PCANet.

III. RESULTS AND EXPERIMENTS

In this section, we first introduce the datasets and evaluation
metrics used in the experiments. Then, we compare the visual
and numerical results of all the comparison methods. Finally,
some critical parameters of our proposals are analyzed.

A. Datasets and Evaluation Metrics
To make a better analysis, we use three SAR image datasets,

as follows.
1) Yellow River [257 × 289 pixels, shown in

Fig. 4(a) and (b) (top)], acquired in 2008 and 2009
by RADARSAT-2 in the Yellow River estuary area of
China. Note the image captured in 2008 is single-look,
while the other one has four nominal looks.

2) San Francisco [256 × 256 pixels, shown in
Fig. 4(a) and (b) (middle)], obtained in August 2003
and May 2004 by RADARSAT.

3) Ottawa [290 × 350 pixels, shown in Fig. 4(a) and (b)
(bottom)], acquired on May and August 1997 by ERS-2
in the flooded area of Ottawa.

The corresponding ground-truth map is shown at each row
in Fig. 4(c). Besides, we selected six well-known numer-
ical metrics for a quantitative analysis. They are: false
alarms (FAs), missed alarms (MAs), overall error (OE), accu-
racy (ACC), F1 score (F1), and kappa coefficient (KC).

B. Parameter-Setting and Result Analysis
1) Settings for 2DPCANet: From (2), we can see that the

number of feature maps is limited by the size of C that is
computed with image patches. Thus, we fix p = w = 17.
In addition, each layer selects eigenvectors corresponding to
the six largest eigenvalues for feature extraction.

2) Settings for (2-D + 1-D)PCANet: For (2-D + 1-D)
PCANet, we fix w = p = 5. The number of eigenvectors
used at the first and second levels is four and 16, respectively.

3) Comparison Method: We compare our proposals with
CWNN [5], PCAKM [11], GaborTLC [3], and PCANet [4].
The parameter settings of all the comparison methods are set
according to the literature’s recommendations. Note that the
difference image computed by (1) is used in all the methods.

4) Result Analysis: In Fig. 4, the visual results of all the
comparison methods on three SAR datasets are given. For
a better visual analysis, we combined the ground-truth map
and the results obtained by different approaches to form RGB
images in Fig. 4(d)–(i) where red color pixels imply the FA
sample obtained by the method and pixels with green color
indicates the method’s MA sample. In addition, the regions
marked in the blue box for 2DPCANet and (2-D + 1-D)
PCANet are cropped and enlarged in Fig. 4(h) and (i).

In Table I, the numerical indices are computed and listed.
Here, we report the median over ten independent replications
using 30% randomly selected samples assigned with wc and
wuc for training. The best values are marked in bold, while
the second best are underlined.

From Fig. 4, we see that our methods reduce the number
of FA samples compared with CWNN and PCAKM in the
unchanged regions, except the area near the boundary of
changed regions. The result can be found in Table I, where
(2-D + 1-D)PCANet consistently achieves a lower FA and OE
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Fig. 4. (From top to bottom) Results on the Yellow River, San Francisco, and Ottawa datasets. (a) and (b) SAR images. (c) Ground-truth maps. (d) CWNN.
(e) PCAKM. (f) GaborTLC. (g) PCANet. (h) 2DPCANet. (i) (2-D + 1-D)PCANet. Changed and unchanged regions are in white and black, respectively.
FA sample appears in red, and the MA sample is in green.

TABLE I
PERFORMANCE METRICS OBTAINED BY DIFFERENT METHODS ON REAL SAR IMAGE DATASETS

TABLE II
RATIO OF MISS-CLASSIFIED PIXELS NEAR THE

BOUNDARY OF REAL CHANGED REGIONS

than that of CWNN and PCAKM. Besides, the values of FA
obtained by (2-D + 1-D)PCANet are consistently lower than
those achieved by PCANet. The main reason is spatial infor-
mation is considered in our methods for feature extraction.
For San Francisco, the visual comparison among GaborTLC,
PCANet, and 2DPCANet reveals that the FA samples are sig-
nificantly reduced in unchanged area by 2DPCANet [shown as
the second row in Fig. 4(f)–(h)]. The result can also obtained
from Table I where 2DPCANet achieves the best performance
in terms of OE, ACC, F1, and KC, while the performance
of (2-D + 1-D)PCANet is comparable with that of PCANet
whose performance is only inferior to that of 2DPCANet.
For Yellow River and Ottawa, the best performance is always
obtained by (2-D + 1-D)PCANet in terms of OE, ACC, F1,
and KC. The main reason is (2-D + 1-D)PCANet stacked Rec-
2DPCA and 1DPCA for feature representation. By comparing
the results of (2-D + 1-D)PCANet and 2DPCANet, we find
that FA and MA samples are mainly located at the boundary
of the anisotropic changed region for 2DPCANet [shown as
the enlarged area marked by the blue box in Fig. 4(h) and (i)].
The result can also be obtained from Table II where the ratio

Fig. 5. Performance of (Left) 2DPCANet and (Right) (2-D + 1-D)PCANet
varying the number of components.

of miss-classified pixels near the boundary of the real changed
region is computed for 2DPCANet, and (2-D + 1-D)PCANet,
and a large value is usually obtained by 2DPCANet. The main
reason is that local complex spatial information should be
carefully considered for effective image feature extraction.

C. Parameters Analysis

As in [12], the number of eigenvectors significantly affects
the network’s performance. Therefore, using the parameter set-
tings in Section III-B, the impact of the number of eigenvectors
on the performance of our proposals is shown in Fig. 5.

Note that as p = 5 is used for (2-D + 1-D)PCANet, only the
number of eigenvectors used in the second layer is analyzed,
while the numbers of eigenvectors used in both the layers of
2DPCANet are fixed as the same and adjusted in Fig. 5.
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TABLE III
RUNNING TIME OF THE TRAINING AND TESTING PHASES

From the figure of 2DPCANet (left), we can see a slow
increase in its performance for San Francisco and Ottawa,
while a significant decrease is observed from 6 to 8 for Yellow
River. The main reason is that the corresponding difference
image contains lots of disruptions. Thus, we set the number
of eigenvectors as 6 for 2DPCANet.

For (2-D + 1-D)PCANet (right), the results of Yellow River
show a large increase, following a stable persistence after 15.
Ottawa’s result shows a slowing increase, reaching a peak
at 16. Thus, we set the number of eigenvectors at the second
layer of (2-D + 1-D)PCA to 16.

D. Computational Complexity
According to Section II-D, the covariance matrix C ∈ Rp×p

is used for Rec-2DPCA, while C ∈ R2p×2p for PCA. Assum-
ing N is the number of image samples and ℓ is the number
of selected eigenvectors, the computational complexity of the
Rec-2DPCA-based feature extraction method is calculated as
O(Nw2(2p3

+3p2
+ (2p +1)ℓ)+ p3

+ p2). At the same time,
it is O(2Nw2(p4

+ p2(ℓ + 1)) + p2
+ p6) for the PCA-based

method. As Nw2
≫ p2 > ℓ, the complexity of the Rec-

2DPCA-based method is lower than that of the PCA-based
approach. This can also be obtained from Table III where the
running times (unit: seconds) are calculated using MATLAB
under CentOS 7.0 (Intel Xeon 6254 CPU, 3.1 GHz) and
40-GB RAM. Obviously, the lowest running time is always
achieved by (2-D + 1-D)PCANet where the size of the image
block used for feature extraction is comparable with that of
PCANet, while a larger image block is adopted in 2DPCANet.

IV. CONCLUSION

In this letter, considering the effectiveness of spatial infor-
mation on speckled image processing, Rec-2DPCA was
designed for unsupervised change detection of SAR imagery,
with which we designed two variants of PCANet, namely,
(2-D + 1-D)PCANet and 2DPCANet.

We assessed the performance of these two methods with
three real SAR datasets and verified that the contextual
information improved the results. From the comparison and
analysis, we can see that due to the usage of Rec-2DPCA, the
designed method achieved good detection results, especially
in suppressing the FAs in the larger unchanged area.

As Rec-2DPCA was used for feature extraction, each input
image is represented in the image domain. Thus, other repre-
sentations, e.g., in extracted feature domains, will be studied.
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