Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/handle/10553/139748
Título: | Pointwise convergence of the heat and subordinates of the heat semigroups associated with the Laplace operator on homogeneous trees and two weighted <i>L<SUP>p</SUP></i> maximal inequalities | Autores/as: | Alvarez Romero, Isaac Barrios, B. Betancor, J. J. |
Clasificación UNESCO: | 12 Matemáticas | Palabras clave: | Multipliers Regularity Equations Graphs Weighted Inequalities, et al. |
Fecha de publicación: | 2025 | Publicación seriada: | Communications in Contemporary Mathematics | Resumen: | In this paper, we consider the heat semigroup {W-t}(t>0) defined by the combinatorial Laplacian and two subordinated families of {W-t}(t>0) on homogeneous trees X. We characterize the weights u on X for which the pointwise convergence to initial data of the above families holds for every f is an element of L-p(X, mu, u) with 1 <= p < infinity, where mu represents the counting measure in X. We prove that this convergence property in X is equivalent to the fact that the maximal operator on t is an element of (0, R), for some R > 0, defined by the semigroup is bounded from L-p(X, mu, u) into L-p(X, mu, v) for some weight v on X. | URI: | https://accedacris.ulpgc.es/handle/10553/139748 | ISSN: | 0219-1997 | DOI: | 10.1142/S021919972450010X | Fuente: | Communications In Contemporary Mathematics[ISSN 0219-1997],v. 27 (02), (Marzo 2025) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.