Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139748
Campo DC Valoridioma
dc.contributor.authorAlvarez Romero, Isaacen_US
dc.contributor.authorBarrios, B.en_US
dc.contributor.authorBetancor, J. J.en_US
dc.date.accessioned2025-06-09T12:13:55Z-
dc.date.available2025-06-09T12:13:55Z-
dc.date.issued2025en_US
dc.identifier.issn0219-1997en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139748-
dc.description.abstractIn this paper, we consider the heat semigroup {W-t}(t>0) defined by the combinatorial Laplacian and two subordinated families of {W-t}(t>0) on homogeneous trees X. We characterize the weights u on X for which the pointwise convergence to initial data of the above families holds for every f is an element of L-p(X, mu, u) with 1 <= p < infinity, where mu represents the counting measure in X. We prove that this convergence property in X is equivalent to the fact that the maximal operator on t is an element of (0, R), for some R > 0, defined by the semigroup is bounded from L-p(X, mu, u) into L-p(X, mu, v) for some weight v on X.en_US
dc.languageengen_US
dc.relation.ispartofCommunications in Contemporary Mathematicsen_US
dc.sourceCommunications In Contemporary Mathematics[ISSN 0219-1997],v. 27 (02), (Marzo 2025)en_US
dc.subject12 Matemáticasen_US
dc.subject.otherMultipliersen_US
dc.subject.otherRegularityen_US
dc.subject.otherEquationsen_US
dc.subject.otherGraphsen_US
dc.subject.otherWeighted Inequalitiesen_US
dc.subject.otherPointwise Convergenceen_US
dc.subject.otherPoisson Integralen_US
dc.subject.otherSubordinates Semigroupsen_US
dc.titlePointwise convergence of the heat and subordinates of the heat semigroups associated with the Laplace operator on homogeneous trees and two weighted <i>L<SUP>p</SUP></i> maximal inequalitiesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S021919972450010Xen_US
dc.identifier.isi001204733500001-
dc.identifier.eissn1793-6683-
dc.identifier.issue02-
dc.relation.volume27en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid15602584-
dc.contributor.daisngid5039278-
dc.contributor.daisngid19968243-
dc.description.numberofpages28en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Alvarez-Romero, I-
dc.contributor.wosstandardWOS:Barrios, B-
dc.contributor.wosstandardWOS:Betancor, JJ-
dc.date.coverdateMarzo 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,264
dc.description.jcr1,2
dc.description.sjrqQ1
dc.description.jcrqQ1
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.fullNameAlvarez Romero, Isaac-
Colección:Artículos
Adobe PDF (259,34 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.