Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/139745
DC FieldValueLanguage
dc.contributor.authorMohamed, Sondosen_US
dc.contributor.authorZimmer, Walteren_US
dc.contributor.authorGreer, Rossen_US
dc.contributor.authorGhita, Ahmed Alaaeldinen_US
dc.contributor.authorCastrillón-Santana, Modestoen_US
dc.contributor.authorTrivedi, Mohanen_US
dc.contributor.authorKnoll, Aloisen_US
dc.contributor.authorCarta, Salvatore Marioen_US
dc.contributor.authorMarras, Mirkoen_US
dc.date.accessioned2025-06-09T12:03:26Z-
dc.date.available2025-06-09T12:03:26Z-
dc.date.issued2025en_US
dc.identifier.isbn9783031918124en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139745-
dc.description.abstractAccurately detecting 3D objects from monocular images in dynamic roadside scenarios remains a challenging problem due to varying camera perspectives and unpredictable scene conditions. This paper introduces a two-stage training strategy to address these challenges. Our approach initially trains a model on the large-scale synthetic dataset, RoadSense3D, which offers a diverse range of scenarios for robust feature learning. Subsequently, we fine-tune the model on a combination of real-world datasets to enhance its adaptability to practical conditions. Experimental results of the Cube R-CNN model on challenging public benchmarks show a remarkable improvement in detection performance, with a mean average precision rising from 0.26 to 12.76 on the TUM Traffic A9 Highway dataset and from 2.09 to 6.60 on the DAIR-V2X-I dataset, when performing transfer learning. Code, data, and qualitative video results are available at https://roadsense3d.github.io.en_US
dc.languageengen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceLecture Notes in Computer Science[ISSN 0302-9743],v. 15630 LNCS, p. 309-325, (Enero 2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherIntelligent Transportation Systemsen_US
dc.subject.otherIntelligent Vehiclesen_US
dc.subject.otherMonocular 3D Object Detectionen_US
dc.subject.otherSynthetic Dataen_US
dc.subject.otherTransfer Learningen_US
dc.titleTransfer Learning from Simulated to Real Scenes for Monocular 3D Object Detectionen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceWorkshops that were held in conjunction with the 18th European Conference on Computer Vision, ECCV 2024en_US
dc.identifier.doi10.1007/978-3-031-91813-1_20en_US
dc.identifier.scopus105006880501-
dc.contributor.orcid0009-0002-5647-6895-
dc.contributor.orcid0000-0003-4565-1272-
dc.contributor.orcid0000-0001-8595-0379-
dc.contributor.orcid0000-0003-3702-8042-
dc.contributor.orcid0000-0002-8673-2725-
dc.contributor.orcid0000-0002-0937-6771-
dc.contributor.orcid0000-0003-4840-076X-
dc.contributor.orcid0000-0001-9481-511X-
dc.contributor.orcid0000-0003-1989-6057-
dc.contributor.authorscopusid57193795607-
dc.contributor.authorscopusid57607056800-
dc.contributor.authorscopusid57220950660-
dc.contributor.authorscopusid58898119100-
dc.contributor.authorscopusid57218418238-
dc.contributor.authorscopusid7103153314-
dc.contributor.authorscopusid7102250639-
dc.contributor.authorscopusid59734046700-
dc.contributor.authorscopusid59469344200-
dc.identifier.eissn1611-3349-
dc.description.lastpage325en_US
dc.description.firstpage309en_US
dc.relation.volume15630 LNCSen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2025en_US
dc.identifier.conferenceidevents155916-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,352
dc.description.sjrqQ2
dc.description.miaricds10,0
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate29-09-2024-
crisitem.event.eventsenddate04-10-2024-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

223
checked on Jan 15, 2026

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.