Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139744
Campo DC Valoridioma
dc.contributor.authorDelgado-Rajó, Francisco A.en_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.date.accessioned2025-06-09T12:02:21Z-
dc.date.available2025-06-09T12:02:21Z-
dc.date.issued2025en_US
dc.identifier.issn1574-9541en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139744-
dc.description.abstractThe monitoring of bird populations provides valuable insights into biodiversity variations and their correlation with environmental changes. This study proposes a flexible hybrid edge computing IoT architecture for a low-cost bird song detection system. The system integrates low-power microcomputers, such as Raspberry Pi, equipped with USB microphones, LoRa modules, and Wi-Fi for seamless operation across rural and urban environments. By utilizing deep learning techniques, including convolutional neural networks (CNNs) trained on bird song datasets, the system performs real-time species detection at the edge, minimizing the need for high-bandwidth transmission. Nodes dynamically select communication technologies based on availability, sending data to an IoT analytics platform. Field deployments demonstrate the system's efficiency, interoperability, and adaptability for biodiversity monitoring, particularly in remote areas with limited connectivity. This architecture addresses the challenges of real-time species detection while ensuring low cost, scalability, and energy efficiency. The main advantage is that devices can operate in areas without mobile coverage, as they only transmit the detection signal. This results in significant bandwidth savings, since the processing is carried out at the edge.en_US
dc.languageengen_US
dc.relation.ispartofEcological Informaticsen_US
dc.sourceEcological Informatics[ISSN 1574-9541],v. 90, (Diciembre 2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherBiodiversityen_US
dc.subject.otherBirds Song Recognitionen_US
dc.subject.otherEdge Computingen_US
dc.subject.otherInternet Of Thingsen_US
dc.subject.otherLow-Power Wide-Area Networksen_US
dc.titleFlexible hybrid edge computing IoT architecture for low-cost bird songs detection systemen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ecoinf.2025.103231en_US
dc.identifier.scopus105006634759-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid59916720600-
dc.contributor.authorscopusid57219115631-
dc.relation.volume90en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,101
dc.description.jcr5,9
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,7
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Redes y Servicios Telemáticos-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7262-7633-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDelgado Rajó, Francisco Alberto-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Adobe PDF (9,73 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.