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A B S T R A C T

The monitoring of bird populations provides valuable insights into biodiversity variations and their correlation 
with environmental changes. This study proposes a flexible hybrid edge computing IoT architecture for a low- 
cost bird song detection system. The system integrates low-power microcomputers, such as Raspberry Pi, 
equipped with USB microphones, LoRa modules, and Wi-Fi for seamless operation across rural and urban en
vironments. By utilizing deep learning techniques, including convolutional neural networks (CNNs) trained on 
bird song datasets, the system performs real-time species detection at the edge, minimizing the need for high- 
bandwidth transmission. Nodes dynamically select communication technologies based on availability, sending 
data to an IoT analytics platform. Field deployments demonstrate the system’s efficiency, interoperability, and 
adaptability for biodiversity monitoring, particularly in remote areas with limited connectivity. This architecture 
addresses the challenges of real-time species detection while ensuring low cost, scalability, and energy efficiency. 
The main advantage is that devices can operate in areas without mobile coverage, as they only transmit the 
detection signal. This results in significant bandwidth savings, since the processing is carried out at the edge.

1. Introduction

In recent years, the observation of biodiversity has become more 
prominent than ever, especially its changes over time and space due to 
different factors. Their study makes it possible to analyse and predict the 
effects of these factors on different ecosystems. Climate change becomes 
relevant, affecting the desertification of large areas, the variation of the 
migrations of many species or the disappearance of others in different 
areas. It is also important to be able to detect the influence of certain 
invasive species on local bird’s populations.

It is, therefore, crucial to monitor the correlation between these 
factors and variations in biodiversity indices. For this analysis, different 
variables, known as Essential biodiversity variables (EBV’s) (Jetz et al., 
2019), can be used for mapping and monitoring populations of multiple 
species. In this study, it is advocated to create a three-dimensional map 
(species, space, time) to reflect the presence or absence of a given species 
in each place or at a certain time (Andrewartha and Birch, 1954; Bell, 
2003; Jetz et al., 2012). Data can come from Incidental observations, 
inventories (Guralnick et al., 2017) or expert data collection.

According to the “State of the World’s birds” in the Annual Review of 
Environment and Resources (Lees et al., 2022), birds can be considered 

an important indicator of how biodiversity indices vary (Schmeller et al., 
2012). According to (Lees et al., 2022), 90 % of extinct bird species are 
endemic to islands. Specifically, in the case of the islands of Maca
ronesia, 32 species have disappeared since 1900.

This is why, in recent years, significant effort has been made to 
monitor the populations of different bird species in any area and for long 
periods of time. To do this, various strategies are used that can cover 
large areas of land. In the case of the observation of migratory move
ments, for example, there are multiple studies that use radar techniques 
(Liechti et al., 2019; Nilsson et al., 2018) to monitor them. Another 
strategy is based on the observation of nests or artificial feeders visited 
by birds, based on RFID (Pereira et al., 2023; Youngblood, 2019), or on 
automatic systems with cameras for video recordings or photographs 
(Binta Islam et al., 2023; Akçay et al., 2020). Evidently, the improve
ment in sensor monitoring techniques has grown exponentially due to 
their lower cost, lower consumption, or the incorporation of new spe
cific communication techniques (La Sorte et al., 2018). The latter also 
makes it possible to relate the data on the existence or non-existence of a 
species to the climatic variables of the environment, for example. 
Another form of monitoring is based on Citizen Science (Ferdoush and 
Li, 2014; Rovithis et al., 2021; Sullivan et al., 2009), based on the 
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collection of data by volunteers who use mobile applications to acquire 
the data that is collected by an organization. This becomes more rele
vant in urban or suburban environments where there is 4G or 5G or Wi- 
Fi connectivity. This allows the automatic detection of species through 
photos or audio recordings, as well as audio recordings that can be used 
for training automatic detection systems afterward.

In recent years, the emergence of deep learning techniques has 
enabled systems to automatically recognize species through the sounds 
they produce. An experienced observer can detect the presence of an 
individual of a given species by the sound of its song. In the same way, 
many works have been developed that allow this detection to occur 
automatically. For this purpose, sound recording equipment is installed 
in the usual habitats and sends audio files corresponding to hours of 
recording in which the songs of various species appear (LeBien et al., 
2020; Ventura et al., 2015) or could transmit in real time the sound 
collected by the audio equipment (Aide et al., 2013; European Com
mission, 2011). This transmission of audio in real time or audio files for 
further processing requires relatively high bit rates and higher con
sumption than the transmission of sensor data using specific IoT com
munications technologies. This is especially critical in rural areas where 
there is no 4G/5G or Wi-Fi coverage. The incorporation of new low-cost 
devices such as microprocessors or Low-Power microcomputers into the 
market makes it possible to combine sensor data collection with pro
cessing and data transmission capacity. The deployment of nodes along 
the terrain that allows audio recording (LeBien et al., 2020) can be 
complemented with additional nodes that, through processing, allow the 
identification of certain species of birds in real time and could send an 
alert in the event of the appearance of any of them. In this way, large 
areas are monitored continuously over time. The latter is the main 
objective of this work.

1.1. Deep learning techniques in edge computing

Various methods have been employed to detect species by identi
fying their songs. For example, (Daidai Liu et al., 2025) provide an 
overview of the most used techniques for species recognition, covering 
approaches for segmenting song fragments as well as deep learning- 
based recognition methods. These processes often follow a four-step 
pipeline: dataset acquisition, preprocessing, feature extraction, and 
classification. Traditionally, most studies perform the last three stages 
on powerful servers.

However, the potential of edge computing remains largely unex
plored in this field. Edge computing enables real-time data processing on 
low-power devices such as microcomputers, eliminating the need for 
constant connectivity to centralized servers. This approach offers sig
nificant advantages, including reduced latency, enhanced data privacy, 
and lower energy consumption, making it particularly suitable for 
ecological monitoring in remote environments.

Acoustic identification is widely recognized as more effective than 
visual methods for species recognition (Stowell et al., 2016). While early 
works in this field relied on deterministic techniques and preprocessing- 
heavy pipelines (Jančovič and Kküer, 2011; Priyadarshani et al., 2018; 
Wielgat et al., 2011), more recent studies have embraced artificial in
telligence (AI) techniques, such as convolutional neural networks 
(CNNs), for species-specific song recognition. Yet, these advancements 
have been primarily implemented on high-performance computing 
platforms, leaving a gap in the development of lightweight solutions 
tailored to edge devices.

Recent research in acoustic monitoring has demonstrated the po
tential of deep learning for biodiversity studies. For instance, (Stefan 
Kahl et al., 2021; Noumida and Rajan, 2021) developed BirdNET, a 
solution leveraging CNNs for species identification from audio re
cordings, showcasing the utility of spectrogram analysis. Similarly, 
(Goitia-Urdiain et al., 2024) highlighted biases in software-dependent 
recognition of bird songs, emphasizing the importance of robust meth
odologies to avoid misinterpretations of bird abundance and vocal 

activity.
Spectrogram processing using CNNs is particularly well-suited for 

edge-based systems, given its compatibility with compressed audio in
puts and its potential for high accuracy. For example, (B. Chandu et al., 
2020) highlights the potential of lightweight architectures for field 
deployment. Additionally, (Velasco-Montero et al., 2024) underscores 
the importance of continual learning frameworks, which could be 
adapted to edge devices for long-term ecological studies.

Recently, studies have emerged (Arowolo et al., 2024) that integrate 
Artificial Intelligence with Internet of Things (IoT) devices and 
communication techniques. This approach brings processing closer to 
sensor devices, thus reducing network load and system latency. By 
leveraging edge computing, this study aims to optimize spectrogram- 
based bird song recognition for low-power devices, striking a balance 
between computational efficiency and classification accuracy. This not 
only enhances the portability of acoustic monitoring systems but also 
enables real-time applications in remote and resource-constrained 
environments.

Recordings, usually obtained in wild environments, are used to train 
the neural network (Andreassen et al., 2014; LeBien et al., 2020) which 
involves an automatic call detection and segmentation process to isolate 
the recording fragments that contain actual bird songs. This process is 
especially necessary when the percentage of recording time with singing 
is very small. In any case, this process is more complicated in noisy 
environments, so it is often followed by an additional manual process 
performed by experts for segmentation prior to the training process of 
the systems (Rocha et al., 2015; Selin et al., 2007). In most of the cited 
studies, either the audio segments obtained through recording devices 
must be transmitted, or these segments require post-processing in a local 
environment. The main drawback is that, except for a few cases, real- 
time detection and classification using Edge computing is not imple
mented (Guma et al., 2025).

Other studies emphasize the use of low-power devices to implement 
an initial detection phase, followed by a more precise species recogni
tion phase (Cinkler et al., 2021). In such systems, the first phase extracts 
features and filters the input, while the second phase employs a pre- 
trained neural network trained on bird sound datasets for classifica
tion. For instance, (Ester Vidaña-Vila et al., 2020) propose a two-layer 
classification approach. The first layer determines whether a bird 
sound is present. If the first layer identifies an acoustic sample as a bird 
sound, the second layer is activated to classify the specific bird species 
and sound type. In these two studies, it is ultimately necessary to 
retransmit the audio segment, losing the ability to perform real-time 
detection and classification with low latency.

In the present study, this process is carried out on-site. This approach 
eliminates the need to transmit audio to a central node. Instead, only the 
alerts generated by the detection and classification process are trans
mitted, significantly reducing the required bitrate. This enables the use 
of alternative long-range, low-power communication techniques, as 
detailed later.

1.2. Microcomputers

There are currently multiple low-cost and low-power devices that 
have moderate processing capacity. Among them, the Raspberry series 
(McBride and Courter, 2019) allows the implementation of artificial 
intelligence systems, in addition to managing wireless communications 
through compatible communications modules of different technologies 
and communicating with different sensors using their input/output 
ports (Ferdoush and Li, 2014). Additionally, as in (Travieso et al., 2021), 
USB cameras or microphones can be incorporated to collect images or 
sounds. One application of this device in the detection of bird songs 
could be the scheduling of automatic recording in wild environments 
depending on the presence or absence of a specific bird, for example. 
But, the highlight of this device compared to Arduino (Nayyar and Puri, 
2016), for example, is the processing capacity and the large number of 
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software libraries that facilitate its programming along with the easy 
interconnection of peripherals (cameras, microphones o communica
tions modules). In addition, it allows programming in C++, Python or 
Matlab to enable the implementation of Internet of Things (IoT) systems 
with artificial intelligence autonomously, respecting the corresponding 
limitations of processing capacity inherent to these devices (Ariyanto 
et al., 2019; Weychan et al., 2015).

1.3. Communications networks

The systems have their own communications module based on 
802.11 (Wi-Fi) embedded in the device. In certain urban scenarios, for 
example, an access point of this type can be found nearby, so the 
connection will be direct with the requirements of this type of network 
in terms of high bit rate, low latency and with the consequent restriction 
of range of less than 100 m, although in the latest versions (802.11 ac, 
802.11n and 802.11ax) has been increased. In rural or suburban set
tings, however, a nearby hotspot is often not available. In these cases, 
the use of LPWAN technologies is required, in any of its options 
(Chaudhari et al., 2020; Delgado-Rajo and Alvarado Ramírez, 2024).

Among these technologies, there are those based on a proprietary 
network architecture (LoRa, LoRaWAN or SigFox), which require an 
interconnection gateway with the IP network and allow ranges of tens of 
kilometers thanks to their spread spectrum modulation (Vangelista, 
2017). The main constraint of these systems is the basic transmission 
rate of less than 20 kbps and the limited size of the data frame. They are 
mainly used for sensor networks or small alerts over long distances 
where latency or even error rates are not critical. In birdsong detection 
systems such as those discussed here, they would not be able, for 
example, to transmit audio segments to the Gateway. Other options that 
allow a higher bitrate are those based on cellular networks (NB-IoT, LTE- 
M or Cat-M1) they also have a long-range and relatively low consump
tion, but they need 3G, 4G or 5G coverage depending on which one is 
chosen. There are other solutions based on interoperability between 
various IoT communications technologies (Delgado-Rajo et al., 2020; 
García-Martín and Torralba, 2021) that allow combining the charac
teristics of these according to the required bit rate and coverage, 
allowing the creation of clusters or Nano cells.

In this work, a flexible architecture that adapts to the scenario is 
proposed, enabling sound detection and recognition at the EDGE while 
alerting about the presence of each species, regardless of the commu
nication technology used. In this way, the device connects to the cloud 
using one technology or another, depending on its location whether an 
urban or rural environment, and also facilitates the transmission of data 
from weather sensors at required points. This eliminates the need for a 
high bit rate, while allowing real-time processing near the sensors 
themselves. As a result, LPWAN techniques can be employed without the 
need for mobile coverage, unlike other works previously cited.

The main innovations proposed are: 

a) The detection of bird songs is processed at the EDGE layer using low- 
cost and low-power devices. This eliminates the need to transmit 
audio segments, as done in other systems, and detects presence in the 
form of a percentage instead.

b) Despite the simplicity of the devices used, the detection results 
achieved are comparable to those found in the state of the art.

c) The final system offers flexibility in selecting the most suitable 
communication technology based on availability.

d) These nodes can be deployed in environments without mobile 
network coverage by utilizing LPWAN techniques, enabling real- 
time detection and classification.

2. Materials and methods

In this work, a deployment of different nodes managed by Raspberry 
Pi 3B+ has been carried out in different locations to check the 

interoperability of the different communication technologies of each 
node and the operation of the birdsong detection system in different 
environments and in real time. It is necessary to consider the limited 
processing and bitrate capacity of these nodes. In addition, the pro
cessing is done at the EDGE so high bit rates are not required and does 
not produce any overload on the network. Each node will be equipped 
with a USB microphone, a battery and a LoRa communications module, 
in addition to the Wi-Fi module embedded in the Raspberry.

2.1. Network architecture

The system architecture is shown in Fig. 1. As shown, it is a flexible 
network architecture that allows interoperability between two com
munications technologies. This is the main advantage of the system over 
others that require Wi-Fi coverage exclusively (Cinkler et al., 2021). 
Each Bird Songs Detection node (BSD) allows the choice between the 
two options depending on the availability or not of the Wi-Fi access 
point. If there is such an access point in the range, it connects using its 
SSID and password. If it does not exist, it sends the data from the 
detection of the chosen species through a LoRa connection to the nearest 
Gateway, which, in turn, retransmits it to the cloud using a wired or 
wireless IP connection to an IP router. This data is sent to a proprietary 
Backend or, in this case, an IoT analytics platform service like Thing
speak. In this way, the versatility of using the same type of node for 
different scenarios is facilitated with a simple configuration by the user 
in the deployment. A bridge is implemented in the gateway between the 
data coming from the LoRa network and the 802.11 network that allows 
the immediate publication of alarms in the Backend. The Gateway uses 
the Heltec LoRa wireless bridge with “Wi-Fi/ Bluetooth-LoRa” signals, 
ESP32, SX1276, which is compatible with the Arduino development 
environment with which the message forwarding code has been devel
oped. The LoRa SX1276 chip that it implements uses a frequency of 868 
MHz (Europe) that allows sending frames of 256 bytes with CRC and a 
maximum bit rate of 300Kbps. The − 148 dBm sensitivity allows for long 
ranges in environments without too many obstacles.

The amount of information transmitted during each detection event 
is relatively small, resulting in low bandwidth requirements. Fig. 2 il
lustrates the format of the LoRa data frame transmitted by each node 
and provides an abstraction of the system architecture, highlighting the 
different layers. The detection process is carried out at the Edge layer, 
reducing the data load on the upper layers. The data frame fields include 
the node identifier, its location, the activation signals of the neural 
network output (integers ranging from 0 to 9) corresponding to each 
song, and a timestamp. It is important to note that this data is trans
mitted only when a species is detected based on a predefined activation 
signal threshold. In the case of Wi-Fi communication, the circuit 
embedded in the Raspberry Pi, along with its libraries, is directly used to 
publish the same data to Thingspeak, maintaining the same structure as 
for LoRa. Additionally, Fig. 2 also shows an abstraction of the employed 
Edge architecture, detailing the devices and physical components that 

Fig. 1. System architecture.
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make up each layer in this case.

2.2. Bird songs detection node implementation

As mentioned above, each node of this architecture is implemented 
using a Raspberry PI 3 B+ as its central core. In the block diagram of 
Fig. 4, it can be seen that the Raspberry itself contains the audio 
acquisition and subsequent processing blocks, which are used to obtain 
the images corresponding to the spectrograms of the 1 s audio segments 
that feed the trained neural network, as reflected in the previous section. 
In addition, a function that takes the activation signals of the neural 
network as inputs to detect the presence or not of the different species is 
implemented. It is important to note that, although the neural network is 
trained for the species mentioned above, depending on the location in 
each case (urban or rural) the species of interest in each case have been 
selected. These functions allow communication to be activated and data 
frames to be formed with the values of position, activation and moment 
of time when the data is produced, as well as writing data to the Rasp
berry’s USB serial port for LoRa communication in case a Wi-Fi access 
point is not available. Both the sending of data using Wi-Fi and LoRa are 
carried out when a certain threshold is reached in the probability of 
detection of any of the species involved in order to avoid overloading the 
network or the data load at the Backend. In this case, a threshold value of 
70 % probability has been selected.

The entire sound processing and detection system that is imple
mented in the Raspberry has been programmed using Matlab and 
Simulink (The MathWorks Inc, 2024) which allows the deployment of 
complete systems in this type of devices making use of the appropriate 
Deep Learning libraries, for example.

The Heltec LoRa wireless bridge module with “Wi-Fi/ blue
toothLloRa” (The same one used to implement the Gateway) is con
nected via an USB serial port just like the USB microphone. The whole 
set is powered by a Diymon 18,650 battery charging module that offers a 
power supply of 3 V/5 V and 1 Amp. Both writing to the serial port for 
LoRa communication or direct publishing via Wi-Fi occur only when 
there is a detection of one of the species. That is, when the level of 
probability of appearance of one of the species is higher than the fixed 
threshold.

2.3. Training process

The learning method selected in this work is a Convolutional Neural 
Network (CNN). This type of network is particularly effective for image 
processing tasks. In this instance, it is used to analyse spectrograms of 
bird songs.

The CNN consists of five simple convolutional layers. Each layer 
applies a series of filters to the input data, followed by a non-linear 
activation function. The purpose of these layers is to progressively 
extract higher-level features from the input data. Following the con
volutional layers is a fully connected layer. This layer takes the high- 
level features extracted by the convolutional layers and uses them to 

make a final prediction. The outputs of the fully connected layer are the 
activation signals of each bird species, represented by the probabilities 
of each species’ appearance.

The input to the network is a spectrogram image of a bird song. This 
image is obtained by applying a Mel-frequency spectrogram to audio 
fragments of bird songs (Carvalho and Gomes, 2023). These audio 
fragments are standardized to a duration of 1 s with a sampling rate of 
16,000 samples per second. The spectrogram is calculated using 0.25 s 
frames duration for spectrum calculation and time hops of 0.01 s. The 
resulting spectrogram image has a resolution of 98 × 50 pixels, due to 
the use of a bank of 50 filters. The output of this layer is a set of feature 
maps that highlight these low-level features in the input images.

The second layer takes the feature maps from the first layer as its 
input. It applies another set of filters, which are typically more complex 
than those in the first layer. These filters are designed to detect higher- 
level features, such as textures and patterns, that are composed of the 
low-level features detected by the first layer. The output of the second 
layer is another set of feature maps that highlight these higher-level 
features.

The fully connected layer that follows the convolutional layers takes 
the high-level, abstract features extracted by the convolutional layers 
and uses them to make a final prediction. In the context of species 
classification, the outputs of the fully connected layer are the proba
bilities of the input belonging to each species.

The training data for the network comes from a database of bird 
songs, specifically from xeno-canto.org (xeno-canto, 2020). This data
base contains hours of recordings of up to 11,939 different species. The 
audio fragments used for training are carefully selected to contain the 
real song of the bird. A filtering process is used to segment the audio data 
and select fragments according to a signal threshold at the desired fre
quency as it can be seen in Fig. 3.

The species selected for this example are the Heineken Eurasian 
Blackcap (Sylvia atricapilla heineken), the Canary Islands chiffchaff 
(Phylloscopus canariensis), the Common blackbird (Turdus merula), the 
Spanish Sparrow (Passer hispaniolensis) and, finally, the Rose-ringed par
akeet (Psittacula krameri), the latter being a widespread invasive species 
in urban areas of cities in much of Europe. The aim is to see their in
fluence on the other two endemic species of the Canary Islands. For each 
of the nodes, the network can be retrained using only the species that 
may be present depending on the area, since there is diversity between 
urban and rural areas. This makes the computational load of each node 
less heavy with the corresponding consumption savings. The trained 
network is the one used by the Simulink model implemented on the 
Raspberry for detection and recognition.

In summary, the five layers in the CNN architecture work together to 
transform the raw input data into a form that can be used for effective 
species classification. They do this by progressively extracting more 
complex and abstract features from the data, building up a hierarchical 
representation of the data that captures the most important aspects for 
the task at hand. This hierarchical feature extraction is one of the key 
strengths of CNNs, and it is what allows them to achieve state-of-the-art 
performance on a wide range of image classification tasks, including 

Fig. 2. LoRa’s frame format and system layers.

Fig. 3. BSD node blocks diagram. All blocks inside the rectangle are imple
mented in Simulink and deployed on the Raspberry PI.
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species classification.

2.4. Data analysis

For the verification of the system, as well as the communications 
systems, various scenarios with different characteristics have been used. 
On the one hand, measures have been taken in urban parks that had Wi- 
Fi connectivity, on the other hand, the system has been tested in a rural 
environment also with Wi-Fi connectivity and, finally, in a rural envi
ronment using a LoRa connection to a remote access point. For the tests 
carried out in these scenarios, the species that can be found in each one 
have been chosen. Fig. 5 shows the distribution of these scenarios. 
Scenarios 1 and 2 of the Fig. 5 correspond to urban parks and 3 to a rural 
area.

In each one, a complete node has been deployed with the different 
communication technologies integrated, making use of one or the other 
depending on availability. The nodes have been located anchored on 
poles or in trees during the testing period. These tests were carried out 

during various time slots in periods of approximately 1 h. Fig. 6 shows 
the implementation of the node with its protective housing. Since the 
goal is to test the interoperability of the system, the battery life is limited 
to 2 h maximum, so the devices were removed after the measurement 
periods. The results obtained are stored and visualized on the Thingspeak 
platform. The data obtained are the percentages of occurrence of each 
species over time, as well as the distribution of the total occurrences of 
the same during the total of all the measurement periods.

2.5. Performance evaluation metrics

To evaluate the effectiveness and robustness of the proposed meth
odology, a comprehensive performance analysis was conducted 
encompassing both class-specific and global metrics. The evaluation 
framework incorporates multiple performance indicators: for individual 
classes, the analysis includes confusion matrices, accuracy, recall, and 
F1-scores; at the system level, total accuracy and macro-average F1- 
score were computed to assess overall performance.

Fig. 4. Training process.

Fig. 5. Localization of the different test scenarios in Gran Canaria.
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The confusion matrix methodology served as the foundational 
analytical tool for deriving these performance metrics. This evaluation 
framework is instrumental in classification tasks, providing a systematic 
quantification of model performance through the categorization of 
outcomes into four fundamental classifications: true positives (TP), false 
positives (FP), true negatives (TN), and false negatives (FN).

The classification outcomes are defined as follows: 

• True Positives (TP) denote instances where avian vocalizations were 
accurately identified within the acoustic environment, with the 

model’s species classification corresponding precisely to the ground 
truth annotations in the environmental recordings.

• False Positives (FP) encompass instances of misclassification where 
either ambient environmental acoustics were erroneously identified 
as avian vocalizations, or species were incorrectly classified, repre
senting type I errors in the detection system.

• True Negatives (TN) represent correct classifications of non-avian 
acoustic events, demonstrating the model’s capability to effectively 
discriminate between bird vocalizations and ambient environmental 
sounds in the acoustic landscape.

• False Negatives (FN) constitute instances where the model failed to 
detect verified avian vocalizations or incorrectly classified the spe
cies present in the recordings. These type II errors have significant 
implications for ecological monitoring and biodiversity assessment 
protocols.

Through the implementation of this comprehensive confusion matrix 
methodology, the study achieved a rigorous evaluation of the model’s 
performance characteristics, facilitating a detailed analysis of its capa
bilities and limitations in species identification within complex acoustic 
environments. This analytical framework provides crucial insights into 
the model’s efficacy in automated bioacoustics monitoring applications.

These metrics offer a quantitative assessment of the model’s capacity 
to accurately classify instances as positive or negative, with a particular 
focus on distinguishing between background and bird types. The equa
tions employed to compute each metric are detailed below: 

Accurracy =
TP + TN

TP + TN + FP + FN
(1) 

Recall =
TP

TP + FN
(2) 

Precision =
TP

TP + FP
(3) 

F1 − score = 2×

(
Precision × Recall
Precision + Recall

)

(4) 

The evaluation framework incorporates multiple complementary 
performance metrics to assess the model’s classification capabilities. 
Accuracy quantifies the overall proportion of correct predictions across 
all classes, encompassing both avian vocalizations and environmental 
sounds. Precision measures the ratio of true positives (TP) among all 
positive predictions, evaluating the model’s reliability in correctly 
identifying specific bird species when a detection is made. Specificity 
calculates the proportion of true negatives (TN) among all negative 
cases, assessing the system’s capability to accurately discriminate 
background environmental sounds from bird vocalizations.

Recall (also termed Sensitivity, Hit Rate, or True Positive Rate 
[TPR]) quantifies the proportion of correctly identified bird vocaliza
tions within each species class relative to the total number of actual 
occurrences in the acoustic dataset. This metric is mathematically 
expressed as the ratio of true positives to the sum of true positives and 
false negatives, providing crucial insights into the model’s capability to 
detect specific avian species when they are present in environmental 
recordings. In the context of bioacoustics monitoring, recall serves as a 
particularly significant indicator, as it directly reflects the system’s 
effectiveness in species detection and its robustness against false nega
tive classifications that could impact biodiversity assessments.

The F1-score, computed as the harmonic mean between precision 
and recall, provides a balanced assessment of the model’s performance 
by considering both false positives and false negatives, particularly 
valuable in ecological monitoring scenarios where both accurate species 
identification and minimal misclassification are crucial. These metrics 
collectively provide a comprehensive evaluation of the model’s capacity 
to differentiate between various bird species and ambient acoustic 

Fig. 6. Node implementation with Raspberry PI 3+. The LoRa module and the 
microphone are connected to the USB ports of the Raspberry Pi. The connection 
with the LoRa module is in serial mode

Fig. 7. Confusion matrix of species detection in Urban Parks.

Fig. 8. Confusion matrix of species detection in Rural Area.
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events in complex environmental recordings.
Total accuracy and macro-averaged F1-score were calculated as the 

arithmetic mean of the corresponding metrics for each class.
Accuracy refers to the percentage of correct predictions made by the 

model for both positive and negative events. Precision, on the other 
hand, measures the proportion of true positives (TP) among all cases 

predicted as positive, evaluating the model’s accuracy in predicting 
events that occurred. Specificity calculates the proportion of true neg
atives (TN) among all negative cases, providing an assessment of the 
model’s ability to correctly identify patients who do not require ICU 
admission. Lastly, the F1-score measures under the concept of harmonic 
mean, which is useful to find the best trade-off between the two quan
tities. They indicate the model’s ability to correctly detect the type of 
bird and background.

3. Results

Firstly, as mentioned above, two neural networks have been trained: 
one for urban areas and the other for rural areas due to the differences 
between the species that we find between the two environments. In the 
first case (urban parks) the following species have been considered: 
Heineken Eurasian Blackcap (Sylvia atricapilla heineken), the Common 
blackbird (Turdus merula), the Spanish Sparrow (Passer hispaniolensis) 
and, finally, the Rose-ringed parakeet (Psittacula krameri). The confusion 
matrix obtained is shown in Fig. 7. In the second case (Rural area) the 
following species have been considered: Heineken Eurasian Blackcap 
(Sylvia atricapilla heineken), the Canary Islands chiffchaff (Phylloscopus 
canariensis) and the Common blackbird (Turdus merula) whose confusion 
matrix is reflected in Fig. 8. On the left, the actual values are shown, and 
at the bottom, the percentage of correct and incorrect detections.

Table 1 shows the metric by classes and global metrics of the first 
ranking system. It shows a very high performance, with overall accuracy 
of 99.0 % and a macro-average F1-score of 0.977, indicating a very 

Fig. 9. Parrot, Blackcap, Sparrow, and Blackbird detections over a 50-min period at location1.

Fig. 10. Percentage of total detections over a period of 10 days at locations 1 
and 2.

Fig. 11. Blackcap, Blackbird and Chiffchaff detections over a 50-min period at location 3 (rural area).
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accurate ranking among the five classes.
Table 2 shows the metric by classes and global metrics of the second 

ranking system. It shows a very high performance, with overall accuracy 
of 98.8 % and a macro-average F1-score of 0.962. The Blackcap class has 
the relatively lowest performance, especially in terms of recall, while the 
other classes show a very accurate ranking.

3.1. Real scenarios detections

Using these networks in the corresponding measurement nodes, ex
amples of the results of the measurements taken in these real scenarios 
over periods of time of approximately 1 h are shown. Fig. 9 details the 
presence detections in scenario 1 from 12:30 to 13:20 on 7 Nov 2024. 
What is shown is the output activation signal of the neural network, 
which, based on a threshold, triggers the detection alarm for the pres
ence of the species in question. Fig. 10 shows the percentage of total 
detections over a 10-day testing period in the same scenario. Fig. 11
shows the results of the detection measurements in scenario 3 of Fig. 5
(rural area). It is important to highlight the robustness of the System in 
these scenarios, despite the moderate wind conditions in the case of the 
rural area and urban noise in the case of the other two.

3.2. LoRa communication system measurements

One of the test environments for the case of LoRa communication is 
the one shown in Fig. 12, which shows the location of the measurement 
point with respect to the Gateway. The distance between the two points 

Fig. 12. Location of the BSD node (yellow) and the Gateway (green). LoRa link. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 13. The LoRa link profile of the tests in the locations shown in Fig. 12
obtained with the BOT-RF tool. dB versus Km.

Fig. 14. RSSI of packets received at the gateway.

Table 1 
Partial and total metrics obtained in Urban Park.

Type of class Accuracy: Recall F1-Score

Metrics by Class

Background 97.90 % 100 % 98.90 %
Parakeet 99,50 % 100 % 99.80 %
Blackcap 96.40 % 94.20 % 95.30 %
Sparrow 96.60 % 94.10 % 95.30 %
Blackbird 99.00 % 99.00 % 99.00 %

Total Accuracy Macro-Average F1-Score
Global Metrics 99.00 % 97.70 %
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is 1,2 Km. The gateway antenna was located at a height of 12 m while 
the portable equipment is shown in Fig. 6. The objective was to test the 
viability of this type of link despite the unevenness found, which is re
flected in Fig. 13. To this extent, the BOT-RF application (Zennaro et al., 
2017), which is a BOT of the “Telegram” application, was used to verify 
the feasibility of wireless links. It uses the database generated by the 
SRTM project that contains globe elevation data. The radiation model he 
uses to perform the simulations is the Longley-Rice Irregular Terrain 
Model (L-R ITM) (Longley and Rice, 1968).

Once simulated and calculated the Free Space Path Loss (FSPL =8 
9.8 dB’s) using the above tool, the RSSI measurements were made every 
200 m between the two locations through fieldwork and the result is 
shown in Fig. 14. It was obtained using a Spreading Factor (SF) of 12 
(Vangelista, 2017) and the maximum power of the Heltec LoRa Wireless 
Bridge SX1276 transmitter which is 20 dBm. With these levels, although 
there is a decrease in the bitrate, the connection is achievable, because 
the sensitivity of the receiver is − 148 dBm. A transmission of the de
tections was made in the scenario and the level of RSSI received at the 
Gateway for each site is shown. Considering that packets received at a 
distance of 0,5 m arrive with a RSSI of − 30 dBm, Eq. (5) is used to 
calculate the RSSI at each point of the journey. As can be seen, the 
measurements do not differ much from those calculated from the 
simulation. 

RSSIrx = RSSI0,5m − FSPLTx− Rx ≈ − 30dBm − 89,8dB = − 119,8dBm
(5) 

4. Discussion

Despite using a low-cost mobile device with relatively limited pro
cessing capacity, along with accessories such as microphones or LoRa 
transceivers, the successful deployment of nodes has been demonstrated 
in two distinct environments. On the one hand, in urban areas (e.g., 
parks), where Wi-Fi access points are readily available, measurements of 
species presence probability have been conducted with highly accept
able accuracy, despite high noise pollution from conversations, traffic, 
and construction. On the other hand, the system’s viability in more 
remote (rural) areas has also been validated through LPWAN trans
mission, which does not require 4G or 5G coverage and can reach several 
kilometers without repeaters, activating only in the absence of an access 
point.

It is important to note that not all possible species were considered in 
the system’s evaluation, as the primary goal was to demonstrate its 
overall feasibility. However, with further training, both the success rate 
and the number of detectable species can be increased.

The evaluation results demonstrate promising performance across 
various metrics. High overall accuracy and macro-averaged F1-scores 
indicate the model’s ability to effectively classify bird vocalizations 
while minimizing misclassifications. The high accuracy observed in the 
“Background” class suggests that the model effectively discriminates 
between environmental sounds and bird vocalizations, minimizing false 
alarms.

Class-specific metrics provide valuable insights into the model’s 
performance for individual species. For example, while the model ach
ieved high accuracy and recall for species such as “Parrot” and “Black
bird,” lower recall values were observed for certain species like 

“Blackcap,” indicating potential challenges in accurately detecting these 
species within the acoustic recordings. These findings highlight the 
importance of further investigation and potential improvements in the 
model’s ability to accurately detect and classify less prevalent or 
acoustically challenging species.

The results obtained in the “Urban Park” and “Rural Area” envi
ronments provide valuable insights into the model’s robustness across 
different acoustic landscapes. While the model demonstrated consis
tently high performance in both environments, further analysis is 
required to understand the factors influencing its performance in 
different acoustic contexts, such as noise levels, species diversity, and 
environmental complexity.

The main advantages of this architecture stem from its ability to 
operate with a lower bitrate compared to systems such as those proposed 
by other studies that require transmitting the audio fragment (Rovithis 
et al., 2021; Sullivan et al., 2009). This is achieved by directly trans
mitting the detection and classification results, which are processed in 
real-time at the EDGE layer of the architecture. The designed LoRa frame 
format includes information on the node’s location, identity, and 
detected species in real-time, making the payload size used by LoRa 
more than sufficient.

Other studies perform real-time processing directly on the nodes 
(Velasco-Montero et al., 2024), but they focus on images, despite using a 
detection and classification approach similar to that of this work. 
However, their main limitation is that they require a Wi-Fi access point, 
as they do not consider the use of LPWAN technologies. Table 3 presents 
a comparison between various studies cited in the state of the art.

In summary, as shown, this work is the only one that enables real- 
time processing while eliminating the need for a high bit rate to trans
mit audio, as the processing is performed directly on the sensor node. 
Additionally, it does not require mobile network coverage, as it utilizes 
LoRa as the communication technology, achieving transmission ranges 
of more than ten kilometers. Another key advantage of this approach is 
its feasibility for deployment in remote areas without network coverage, 
as well as its ability to support a large number of sensor nodes due to its 
low cost.

At the same time, long-duration sound segments of each species have 
been used to cut them into only those of interest of 1 s. duration for the 

Table 2 
Partial and total metrics obtained in Rural Area.

Type of class Accuracy: Recall F1-Score

Metrics by Class

Background 99.20 % 100 % 99.60 %
Blackcap 97,70 % 81.7 % 89.00 %
Blackbird 97.00 % 99.00 % 98.00 %
Chiffchaff 99.00 % 97,70 % 98.30 %

Total Accuracy Macro-Average F1-Score
Global Metrics 98.80 % 96.20 %

Table 3 
Comparison between different similar studies in terms of connectivity, latency 
and where they perform the processing.

Study Architecture Need for 
coverage

Communications 
Technology

Real 
time

LeBien 
et al. 
(2020)

Pipeline. 
Soundscape 
recordings 
previously collected

No None No

Sullivan 
et al. 
(2009)

Based in mobile 
recordings

Yes 4G No

Rovithis 
et al. 
(2021)

Based in mobile 
recordings Yes 4G No

Cinkler 
et al. 
(2021)

Pre-processing on 
sensor nodes and 
post-processing in 
the cloud

Yes Wi-Fi Yes

Velasco- 
Montero 
et al. 
(2024)

On-site processing 
with camera traps 
and sending alarms 
via Wi-Fi

Yes Wi-Fi Yes

This Work

On-site processing 
using microphone 
and Rasperry Pi and 
sending alarms via 
Wi-Fi or LoRa

Not in the 
case of 

LoRa up to 
10 Km

Wi-Fi 
LoRa

Yes
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training. To do this, a filtering algorithm has been used, followed by a 
detection of the existence of bird songs by means of RMS of the signal 
instead of doing it manually (Rocha et al., 2015; Selin et al., 2007), 
simplifying the data acquisition process.

This work is based on the application of new IoT-based communi
cation techniques to enable access to remote rural environments. It al
lows for the deployment of a low-cost IoT network capable of mapping, 
in real time, the presence of specific species across a wide area. In this 
way, bird populations can be easily monitored through a web or mobile 
application. The main challenge faced was conducting field tests and 
ensuring the interoperability of the two communication techniques in 
order to build an equivalent system for both. We are currently imple
menting a similar system for Smart Cities, using another communication 
technology that is more resistant to obstacles, although with a shorter 
range.

5. Conclusions

The feasibility of implementing a low-cost sensor node for bird 
detection through song recognition with local processing (EDGE 
computing) has been demonstrated. This enables its integration into a 
flexible Internet of Things (IoT) architecture that combines two different 
communication technologies. The system serves as a valuable tool for 
biodiversity analysis by detecting the presence of various bird species 
continuously and in real-time. It allows for analysis based on factors 
such as seasonality, time of day, and responses to external influences, 
such as the presence of invasive species. For example, during testing, the 
system detected the impact of the Rose-ringed parakeet (Psittacula kra
meri) on the Heineken Eurasian Blackcap (Sylvia atricapilla heineken).

The flexibility of this architecture simplifies the deployment of 
sensor nodes, as it does not necessarily rely on an access point or mobile 
network coverage. Moreover, with minor modifications, the system 
could incorporate data from additional sensors, such as wind speed, 
temperature, humidity, or solar radiation. Additionally, this type of 
node facilitates the monitoring of remote or isolated areas by strategi
cally placing LoRa Gateways in locations with network access.

The system achieves accuracy levels comparable to other state-of- 
the-art solutions (98.8 % in urban areas and 99 % in rural areas), 
despite being implemented on portable devices with limited computa
tional capacity. The next step involves improved training based on a 
large and diverse dataset, as well as enabling the generation of a custom 
dataset using the developed nodes themselves. This would involve sys
tems capable of storing or transmitting detected sound segments of each 
species — a line of research that is currently emerging within the group. 
The main limitation of this system lies in the processing capabilities of 
the devices used, which currently results in suboptimal accuracy. 
However, the low cost of these devices enables a broader deployment of 
sensor nodes. In future work, our team plans to conduct long-term 
testing with a greater variety of bird species, continuously integrating 
sensor data with environmental information.
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Cinkler, T., Kristóf, N., Simon, C., Vida, R., Rajab, H., 2021. Two-phase sensor decision: 
machine-learning for bird sound recognition and vineyard protection. IEEE Sensors 
J. https://doi.org/10.1109/JSEN.2021.3134817.

Delgado-Rajo, F., Alvarado Ramírez, I., 2024. Hybrid architectures to improve coverage 
in remote areas and incorporate long-range LPWAN multi-hop IoT strategies. 
IntechOpen. https://doi.org/10.5772/intechopen.113328.

Delgado-Rajo, F., Melian-Segura, A., Guerra, V., Perez-Jimenez, R., Sanchez- 
Rodriguez, D., 2020. Hybrid RF/VLC network architecture for the internet of things. 
Sensors 20 (2), 478. https://doi.org/10.3390/s20020478.

European Commission, 2011. Automatic acoustic monitoring and inventorying of 
biodiversity (LIFE08 NAT/GR/000539). LIFE Programme. Retrieved from. htt 
ps://webgate.ec.europa.eu/life/publicWebsite/project/LIFE08-NAT-GR- 
000539/automatic-acoustic-monitoring-and-inventorying-of-biodiversity.

Ferdoush, S., Li, X., 2014. Wireless sensor network system design using raspberry pi and 
Arduino for environmental monitoring applications. Proc. Comp. Sci. 34, 103–110. 
https://doi.org/10.1016/j.procs.2014.07.059.

García-Martín, J.P., Torralba, A., 2021. Model of a device-level combined wireless 
network based on NB-IoT and IEEE 802.15.4 standards for low-power applications. 
Sensors 21 (11), 3718. https://doi.org/10.3390/s21113718.
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