Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139731
Título: Segmentation of Intraoperative Glioblastoma Hyperspectral Images Using Self-Supervised U-Net++
Autores/as: Gazzoni, Marco
Salvia, Marco La
Torti, Emanuele
Marenzi, Elisa
León, Raquel 
Ortega, Samuel 
Martinez, Beatriz
Fabelo, Himar 
Callicó, Gustavo 
Leporati, Francesco
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Brain Cancer
Computer-Aided Diagnosis
Deep Learning
Disease Diagnosis
Hyperspectral Imaging, et al.
Fecha de publicación: 2025
Publicación seriada: Proceedings Of The International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications
Conferencia: 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2025 
Resumen: Brain tumour resection yields many challenges for neurosurgeons and even though histopathological analysis can help to complete tumour elimination, it is not feasible due to the extent of time and tissue demand for margin inspection. This paper presents a novel attention-based self-supervised methodology to improve current research on medical hyperspectral imaging as a tool for computer-aided diagnosis. We designed a novel architecture comprising the U-Net++ and the attention mechanism on the spectral domain, trained in a self-supervised framework to exploit contrastive learning capabilities and overcome dataset size problems arising in medical scenarios. We operated fifteen hyperspectral images from the publicly available HELICoiD dataset. Enhanced by extensive data augmentation, transfer-learning and self-supervision, we measured accuracy, specificity and recall values above 90% in the automatic end-to-end segmentation of intraoperative glioblastoma hyperspectral images. We evaluated our outcomes with the ground truths produced by the HELICoiD project, obtaining results that are comparable concerning the gold-standard procedure.
URI: https://accedacris.ulpgc.es/handle/10553/139731
ISSN: 2184-5921
DOI: 10.5220/0013245900003912
Fuente: Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications[ISSN 2184-5921],v. 3, p. 633-639, (Enero 2025)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.