Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/139731
DC FieldValueLanguage
dc.contributor.authorGazzoni, Marcoen_US
dc.contributor.authorSalvia, Marco Laen_US
dc.contributor.authorTorti, Emanueleen_US
dc.contributor.authorMarenzi, Elisaen_US
dc.contributor.authorLeón, Raquelen_US
dc.contributor.authorOrtega, Samuelen_US
dc.contributor.authorMartinez, Beatrizen_US
dc.contributor.authorFabelo, Himaren_US
dc.contributor.authorCallicó, Gustavoen_US
dc.contributor.authorLeporati, Francescoen_US
dc.date.accessioned2025-06-09T10:54:08Z-
dc.date.available2025-06-09T10:54:08Z-
dc.date.issued2025en_US
dc.identifier.issn2184-5921en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139731-
dc.description.abstractBrain tumour resection yields many challenges for neurosurgeons and even though histopathological analysis can help to complete tumour elimination, it is not feasible due to the extent of time and tissue demand for margin inspection. This paper presents a novel attention-based self-supervised methodology to improve current research on medical hyperspectral imaging as a tool for computer-aided diagnosis. We designed a novel architecture comprising the U-Net++ and the attention mechanism on the spectral domain, trained in a self-supervised framework to exploit contrastive learning capabilities and overcome dataset size problems arising in medical scenarios. We operated fifteen hyperspectral images from the publicly available HELICoiD dataset. Enhanced by extensive data augmentation, transfer-learning and self-supervision, we measured accuracy, specificity and recall values above 90% in the automatic end-to-end segmentation of intraoperative glioblastoma hyperspectral images. We evaluated our outcomes with the ground truths produced by the HELICoiD project, obtaining results that are comparable concerning the gold-standard procedure.en_US
dc.languageengen_US
dc.relation.ispartofProceedings Of The International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applicationsen_US
dc.sourceProceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications[ISSN 2184-5921],v. 3, p. 633-639, (Enero 2025)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherBrain Canceren_US
dc.subject.otherComputer-Aided Diagnosisen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherDisease Diagnosisen_US
dc.subject.otherHyperspectral Imagingen_US
dc.subject.otherSelf-Supervised Learningen_US
dc.titleSegmentation of Intraoperative Glioblastoma Hyperspectral Images Using Self-Supervised U-Net++en_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2025en_US
dc.identifier.doi10.5220/0013245900003912en_US
dc.identifier.scopus105001875766-
dc.contributor.orcid0000-0003-4213-8270-
dc.contributor.orcid0000-0003-3724-8213-
dc.contributor.orcid0000-0001-8437-8227-
dc.contributor.orcid0000-0003-4537-5618-
dc.contributor.orcid0000-0002-4287-3200-
dc.contributor.orcid0000-0002-7519-954X-
dc.contributor.orcid0000-0001-7835-9660-
dc.contributor.orcid0000-0002-9794-490X-
dc.contributor.orcid0000-0002-3784-5504-
dc.contributor.orcid0000-0003-2901-4935-
dc.contributor.authorscopusid58547824100-
dc.contributor.authorscopusid57223922393-
dc.contributor.authorscopusid56091390500-
dc.contributor.authorscopusid55151473500-
dc.contributor.authorscopusid57212456639-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid57218919933-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid55937698500-
dc.identifier.eissn2184-4321-
dc.description.lastpage639en_US
dc.description.firstpage633en_US
dc.relation.volume3en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2025en_US
dc.identifier.conferenceidevents155912-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate26-02-2025-
crisitem.event.eventsenddate28-02-2025-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameLeón Martín, Sonia Raquel-
crisitem.author.fullNameOrtega Sarmiento, Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Appears in Collections:Actas de congresos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.