Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139729
DC FieldValueLanguage
dc.contributor.authorSanfilippo, Stefanoen_US
dc.contributor.authorFarina, Lorenzoen_US
dc.contributor.authorde Vito, Pietroen_US
dc.contributor.authorHernández Cabrera, José Juanen_US
dc.contributor.authorHernández Gálvez, José Juanen_US
dc.contributor.authorÉvora Gómez, Joséen_US
dc.date.accessioned2025-06-09T10:49:22Z-
dc.date.available2025-06-09T10:49:22Z-
dc.date.issued2025en_US
dc.identifier.issn2255-8942en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139729-
dc.description.abstractThis paper introduces a novel multi-method modelling framework for Renewable Energy Communities (RECs), integrating agent-based modelling, discrete-event simulation, and system dynamics. This hybrid approach enables a comprehensive assessment of RECs, capturing both their technical and economic dynamics. The work’s key contributions are twofold: (i) a flexible technical modelling framework adaptable to diverse geographical and regulatory contexts, and (ii) an advanced optimisation model aimed at minimising costs and maximising benefits for decision support. The optimisation model has been built upon the modelling framework and can be adjusted to various REC configurations, allowing for variations in photovoltaic capacity, demand patterns, energy price structures, and regulatory schemes. This flexibility enables a policy-aware and context-sensitive simulation and optimisation of REC operations. The model enables the evaluation of a wide range of scenarios, helping stakeholders assess both short-term and long-term technical and economic performance, making it a robust tool for forecasting and strategic planning. A real-world case study in Val d’Aosta, Italy, demonstrates the model’s applicability and effectiveness. The study highlights the framework’s ability to incorporate country-specific REC regulations while optimizing REC configurations. Results show a reduction in external energy reliance and an increase in shared energy, leading to enhanced energy autonomy and economic benefits. These findings validate the model’s robustness and scalability, establishing it as a pioneering framework for REC planning and policy innovation.en_US
dc.languageengen_US
dc.relation.ispartofBaltic Journal Of Modern Computingen_US
dc.sourceBaltic Journal of Modern Computing[ISSN 2255-8942],v. 13 (1), p. 200-220, (Enero 2025)en_US
dc.subjectInvestigaciónen_US
dc.subject.otherAgent-Based Modellingen_US
dc.subject.otherDiscrete-Event Simulationen_US
dc.subject.otherEconomic Benefitsen_US
dc.subject.otherFlexibilityen_US
dc.subject.otherMeta-Heuristic Optimisationen_US
dc.subject.otherModelling Approachen_US
dc.subject.otherMulti-Method Simulationen_US
dc.subject.otherRenewable Energy Communitiesen_US
dc.subject.otherReplicabilityen_US
dc.subject.otherScalabilityen_US
dc.subject.otherSystem Dynamicsen_US
dc.titleMulti-Method Simulation and Optimisation for Maximising Benefits in Renewable Energy Communities: A Real-World Case Study from Italyen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.22364/bjmc.2025.13.1.11en_US
dc.identifier.scopus105001099960-
dc.identifier.isi001460923600011-
dc.contributor.orcid0009-0001-0547-6222-
dc.contributor.orcid0009-0005-5159-1861-
dc.contributor.orcid0000-0002-7353-2011-
dc.contributor.orcid0000-0003-2427-2441-
dc.contributor.orcid0009-0008-3626-7520-
dc.contributor.orcid0000-0001-9348-7265-
dc.contributor.authorscopusid57016463200-
dc.contributor.authorscopusid59711069300-
dc.contributor.authorscopusid57838337300-
dc.contributor.authorscopusid58645085500-
dc.contributor.authorscopusid59710520600-
dc.contributor.authorscopusid57193703780-
dc.identifier.eissn2255-8950-
dc.description.lastpage220en_US
dc.identifier.issue1-
dc.description.firstpage200en_US
dc.relation.volume13en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid72854319-
dc.contributor.daisngid29904230-
dc.contributor.daisngid38377318-
dc.contributor.daisngid72728556-
dc.contributor.daisngid72855645-
dc.contributor.daisngid72613099-
dc.description.numberofpages21en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Sanfilippo, S-
dc.contributor.wosstandardWOS:Farina, L-
dc.contributor.wosstandardWOS:De Vito, P-
dc.contributor.wosstandardWOS:Hernández-Cabrera, JJ-
dc.contributor.wosstandardWOS:Hernández-Gálvez, JJ-
dc.contributor.wosstandardWOS:Évora-Gómez, J-
dc.date.coverdateEnero 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,253
dc.description.sjrqQ3
dc.description.esciESCI
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2427-2441-
crisitem.author.orcid0000-0001-9348-7265-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameHernández Cabrera, José Juan-
crisitem.author.fullNameHernández Gálvez, José Juan-
crisitem.author.fullNameÉvora Gómez, José-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.